551
阿里云
二次排序示例__示例程序_MapReduce_大数据计算服务-阿里云
(1)准备好测试程序jar包,假设名字为mapreduce-examples.jar;
(2)准备好SecondarySort的测试表和资源;
创建表
create table ss_in(key bigint, value bigint); create table ss_out(key bigint, value bigint)
添加资源
add jar mapreduce-examples.jar -f;
(3)使用tunnel导入数据;
tunnel upload data ss_in;
导入ss_in表的数据文件data内容为:
1,2 2,1 1,1 2,2
测试步骤
在odpscmd中执行SecondarySort
jar -resources mapreduce-examples.jar -classpath mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.SecondarySort ss_in ss_out;
预期结果
作业成功结束。 输出表ss_out中内容为:
+------------+------------+
| key | value |
+------------+------------+
| 1 | 1 |
| 1 | 2 |
| 2 | 1 |
| 2 | 2 |
+------------+------------+
代码示例
package com.aliyun.odps.mapred.open.example;
import java.io.IOException;
import java.util.Iterator;
import com.aliyun.odps.data.Record;
import com.aliyun.odps.mapred.JobClient;
import com.aliyun.odps.mapred.MapperBase;
import com.aliyun.odps.mapred.ReducerBase;
import com.aliyun.odps.mapred.TaskContext;
import com.aliyun.odps.mapred.conf.JobConf;
import com.aliyun.odps.mapred.utils.SchemaUtils;
import com.aliyun.odps.mapred.utils.InputUtils;
import com.aliyun.odps.mapred.utils.OutputUtils;
import com.aliyun.odps.data.TableInfo;
/**
*
* This is an example ODPS Map/Reduce application. It reads the input table that
* must contain two integers per record. The output is sorted by the first and
* second number and grouped on the first number.
*
**/
public class SecondarySort {
/**
* Read two integers from each line and generate a key, value pair as ((left,
* right), right).
**/
public static class MapClass extends MapperBase {
private Record key;
private Record value;
@Override
public void setup(TaskContext context) throws IOException {
key = context.createMapOutputKeyRecord();
value = context.createMapOutputValueRecord();
}
@Override
public void map(long recordNum, Record record, TaskContext context)
throws IOException {
long left = 0;
long right = 0;
if (record.getColumnCount() > 0) {
left = (Long) record.get(0);
if (record.getColumnCount() > 1) {
right = (Long) record.get(1);
}
key.set(new Object[] { (Long) left, (Long) right });
value.set(new Object[] { (Long) right });
context.write(key, value);
}
}
}
/**
* A reducer class that just emits the sum of the input values.
**/
public static class ReduceClass extends ReducerBase {
private Record result = null;
@Override
public void setup(TaskContext context) throws IOException {
result = context.createOutputRecord();
}
@Override
public void reduce(Record key, Iterator<Record> values, TaskContext context)
throws IOException {
result.set(0, key.get(0));
while (values.hasNext()) {
Record value = values.next();
result.set(1, value.get(0));
context.write(result);
}
}
}
public static void main(String[] args) throws Exception {
if (args.length != 2) {
System.err.println("Usage: secondarysrot <in> <out>");
System.exit(2);
}
JobConf job = new JobConf();
job.setMapperClass(MapClass.class);
job.setReducerClass(ReduceClass.class);
//将多列设置为Key
// compare first and second parts of the pair
job.setOutputKeySortColumns(new String[] { "i1", "i2" });
// partition based on the first part of the pair
job.setPartitionColumns(new String[] { "i1" });
// grouping comparator based on the first part of the pair
job.setOutputGroupingColumns(new String[] { "i1" });
// the map output is LongPair, Long
job.setMapOutputKeySchema(SchemaUtils.fromString("i1:bigint,i2:bigint"));
job.setMapOutputValueSchema(SchemaUtils.fromString("i2x:bigint"));
InputUtils.addTable(TableInfo.builder().tableName(args[0]).build(), job);
OutputUtils.addTable(TableInfo.builder().tableName(args[1]).build(), job);
JobClient.runJob(job);
System.exit(0);
}
}
最后更新:2016-11-24 11:23:47
上一篇:
多任务示例__示例程序_MapReduce_大数据计算服务-阿里云
下一篇:
使用资源示例__示例程序_MapReduce_大数据计算服务-阿里云
常见错误说明__附录_大数据计算服务-阿里云
发送短信接口__API使用手册_短信服务-阿里云
接口文档__Android_安全组件教程_移动安全-阿里云
运营商错误码(联通)__常见问题_短信服务-阿里云
设置短信模板__使用手册_短信服务-阿里云
OSS 权限问题及排查__常见错误及排除_最佳实践_对象存储 OSS-阿里云
消息通知__操作指南_批量计算-阿里云
设备端快速接入(MQTT)__快速开始_阿里云物联网套件-阿里云
查询API调用流量数据__API管理相关接口_API_API 网关-阿里云
使用STS访问__JavaScript-SDK_SDK 参考_对象存储 OSS-阿里云