RabbitMQ消息隊列(七):適用於雲計算集群的遠程調用(RPC)
1. 客戶端接口 Client interface
為了展示一個RPC服務是如何使用的,我們將創建一段很簡單的客戶端class。 它將會向外提供名字為call的函數,這個call會發送RPC請求並且阻塞知道收到RPC運算的結果。代碼如下:
fibonacci_rpc = FibonacciRpcClient() result = fibonacci_rpc.call(4) print "fib(4) is %r" % (result,)
2. 回調函數隊列 Callback queue
總體來說,在RabbitMQ進行RPC遠程調用是比較容易的。client發送請求的Message然後server返回響應結果。為了收到響應client在publish message時需要提供一個”callback“(回調)的queue地址。code如下:
result = channel.queue_declare(exclusive=True) callback_queue = result.method.queue channel.basic_publish(exchange='', routing_key='rpc_queue', properties=pika.BasicProperties( reply_to = callback_queue, ), body=request) # ... and some code to read a response message from the callback_queue ...
2.1 Message properties
AMQP 預定義了14個屬性。它們中的絕大多很少會用到。以下幾個是平時用的比較多的:
- delivery_mode: 持久化一個Message(通過設定值為2)。其他任意值都是非持久化。請移步RabbitMQ消息隊列(三):任務分發機製
- content_type: 描述mime-type 的encoding。比如設置為JSON編碼:設置該property為application/json。
- reply_to: 一般用來指明用於回調的queue(Commonly used to name a callback queue)。
- correlation_id: 在請求中關聯處理RPC響應(correlate RPC responses with requests)。
3. 相關id Correlation id
在上個小節裏,實現方法是對每個RPC請求都會創建一個callback queue。這是不高效的。幸運的是,在這裏有一個解決方法:為每個client創建唯一的callback queue。
這又有其他問題了:收到響應後它無法確定是否是它的,因為所有的響應都寫到同一個queue了。上一小節的correlation_id在這種情況下就派上用場了:對於每個request,都設置唯一的一個值,在收到響應後,通過這個值就可以判斷是否是自己的響應。如果不是自己的響應,就不去處理。
4. 總結

工作流程:
- 當客戶端啟動時,它創建了匿名的exclusive callback queue.
- 客戶端的RPC請求時將同時設置兩個properties: reply_to設置為callback queue;correlation_id設置為每個request一個獨一無二的值.
- 請求將被發送到an rpc_queue queue.
- RPC端或者說server一直在等待那個queue的請求。當請求到達時,它將通過在reply_to指定的queue回複一個message給client。
- client一直等待callback queue的數據。當message到達時,它將檢查correlation_id的值,如果值和它request發送時的一致那麼就將返回響應。
5. 最終實現
The code for rpc_server.py:
#!/usr/bin/env python import pika connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) channel = connection.channel() channel.queue_declare(queue='rpc_queue') def fib(n): if n == 0: return 0 elif n == 1: return 1 else: return fib(n-1) + fib(n-2) def on_request(ch, method, props, body): n = int(body) print " [.] fib(%s)" % (n,) response = fib(n) ch.basic_publish(exchange='', routing_key=props.reply_to, properties=pika.BasicProperties(correlation_id = \ props.correlation_id), body=str(response)) ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_qos(prefetch_count=1) channel.basic_consume(on_request, queue='rpc_queue') print " [x] Awaiting RPC requests" channel.start_consuming()
The server code is rather straightforward:
- (4) As usual we start by establishing the connection and declaring the queue.
- (11) We declare our fibonacci function. It assumes only valid positive integer input. (Don't expect this one to work for big numbers, it's probably the slowest recursive implementation possible).
- (19) We declare a callback for basic_consume, the core of the RPC server. It's executed when the request is received. It does the work and sends the response back.
- (32) We might want to run more than one server process. In order to spread the load equally over multiple servers we need to set theprefetch_count setting.
The code for rpc_client.py:
#!/usr/bin/env python import pika import uuid class FibonacciRpcClient(object): def __init__(self): self.connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) self.channel = self.connection.channel() result = self.channel.queue_declare(exclusive=True) self.callback_queue = result.method.queue self.channel.basic_consume(self.on_response, no_ack=True, queue=self.callback_queue) def on_response(self, ch, method, props, body): if self.corr_id == props.correlation_id: self.response = body def call(self, n): self.response = None self.corr_id = str(uuid.uuid4()) self.channel.basic_publish(exchange='', routing_key='rpc_queue', properties=pika.BasicProperties( reply_to = self.callback_queue, correlation_id = self.corr_id, ), body=str(n)) while self.response is None: self.connection.process_data_events() return int(self.response) fibonacci_rpc = FibonacciRpcClient() print " [x] Requesting fib(30)" response = fibonacci_rpc.call(30) print " [.] Got %r" % (response,)
The client code is slightly more involved:
- (7) We establish a connection, channel and declare an exclusive 'callback' queue for replies.
- (16) We subscribe to the 'callback' queue, so that we can receive RPC responses.
- (18) The 'on_response' callback executed on every response is doing a very simple job, for every response message it checks if thecorrelation_id is the one we're looking for. If so, it saves the response inself.response and breaks the consuming loop.
- (23) Next, we define our main call method - it does the actual RPC request.
- (24) In this method, first we generate a unique correlation_id number and save it - the 'on_response' callback function will use this value to catch the appropriate response.
- (25) Next, we publish the request message, with two properties: reply_to and correlation_id.
- (32) At this point we can sit back and wait until the proper response arrives.
- (33) And finally we return the response back to the user.
開始rpc_server.py:
$ python rpc_server.py [x] Awaiting RPC requests通過client來請求fibonacci數:
$ python rpc_client.py [x] Requesting fib(30)現在這個設計並不是唯一的,但是這個實現有以下優勢:
- 如何RPC server太慢,你可以擴展它:啟動另外一個RPC server。
- 在client端, 無所進行加鎖能同步操作,他所作的就是發送請求等待響應。
我們的code還是挺簡單的,並沒有嚐試去解決更複雜和重要的問題,比如:
- 如果沒有server在運行,client需要怎麼做?
- RPC應該設置超時機製嗎?
- 如果server運行出錯並且拋出了異常,需要將這個問題轉發到client嗎?
- 需要邊界檢查嗎?
尊重原創,轉載請注明出處 anzhsoft: https://blog.csdn.net/anzhsoft/article/details/19633107
參考資料:
1. https://www.rabbitmq.com/tutorials/tutorial-six-python.html
最後更新:2017-04-03 12:55:12