閱讀168 返回首頁    go 阿裏雲 go 技術社區[雲棲]


RabbitMQ消息隊列(七):適用於雲計算集群的遠程調用(RPC)

        在雲計算環境中,很多時候需要用它其他機器的計算資源,我們有可能會在接收到Message進行處理時,會把一部分計算任務分配到其他節點來完成。那麼,RabbitMQ如何使用RPC呢?在本篇文章中,我們將會通過其它節點求來斐波納契完成示例。

1. 客戶端接口 Client interface

        為了展示一個RPC服務是如何使用的,我們將創建一段很簡單的客戶端class。 它將會向外提供名字為call的函數,這個call會發送RPC請求並且阻塞知道收到RPC運算的結果。代碼如下:

fibonacci_rpc = FibonacciRpcClient()
result = fibonacci_rpc.call(4)
print "fib(4) is %r" % (result,)

2. 回調函數隊列 Callback queue

        總體來說,在RabbitMQ進行RPC遠程調用是比較容易的。client發送請求的Message然後server返回響應結果。為了收到響應client在publish message時需要提供一個”callback“(回調)的queue地址。code如下:

result = channel.queue_declare(exclusive=True)
callback_queue = result.method.queue

channel.basic_publish(exchange='',
                      routing_key='rpc_queue',
                      properties=pika.BasicProperties(
                            reply_to = callback_queue,
                            ),
                      body=request)

# ... and some code to read a response message from the callback_queue ...

2.1 Message properties

AMQP 預定義了14個屬性。它們中的絕大多很少會用到。以下幾個是平時用的比較多的:

  • delivery_mode: 持久化一個Message(通過設定值為2)。其他任意值都是非持久化。請移步RabbitMQ消息隊列(三):任務分發機製
  • content_type: 描述mime-type 的encoding。比如設置為JSON編碼:設置該property為application/json
  • reply_to: 一般用來指明用於回調的queue(Commonly used to name a callback queue)。
  • correlation_id: 在請求中關聯處理RPC響應(correlate RPC responses with requests)。


3. 相關id Correlation id

       在上個小節裏,實現方法是對每個RPC請求都會創建一個callback queue。這是不高效的。幸運的是,在這裏有一個解決方法:為每個client創建唯一的callback queue。

       這又有其他問題了:收到響應後它無法確定是否是它的,因為所有的響應都寫到同一個queue了。上一小節的correlation_id在這種情況下就派上用場了:對於每個request,都設置唯一的一個值,在收到響應後,通過這個值就可以判斷是否是自己的響應。如果不是自己的響應,就不去處理。

 

4. 總結

     工作流程:

  • 當客戶端啟動時,它創建了匿名的exclusive callback queue.
  • 客戶端的RPC請求時將同時設置兩個properties: reply_to設置為callback queue;correlation_id設置為每個request一個獨一無二的值.
  • 請求將被發送到an rpc_queue queue.
  • RPC端或者說server一直在等待那個queue的請求。當請求到達時,它將通過在reply_to指定的queue回複一個message給client。
  • client一直等待callback queue的數據。當message到達時,它將檢查correlation_id的值,如果值和它request發送時的一致那麼就將返回響應。


5. 最終實現

The code for rpc_server.py:

#!/usr/bin/env python
import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))

channel = connection.channel()

channel.queue_declare(queue='rpc_queue')

def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)

def on_request(ch, method, props, body):
    n = int(body)

    print " [.] fib(%s)"  % (n,)
    response = fib(n)

    ch.basic_publish(exchange='',
                     routing_key=props.reply_to,
                     properties=pika.BasicProperties(correlation_id = \
                                                     props.correlation_id),
                     body=str(response))
    ch.basic_ack(delivery_tag = method.delivery_tag)

channel.basic_qos(prefetch_count=1)
channel.basic_consume(on_request, queue='rpc_queue')

print " [x] Awaiting RPC requests"
channel.start_consuming()

The server code is rather straightforward:
  • (4) As usual we start by establishing the connection and declaring the queue.
  • (11) We declare our fibonacci function. It assumes only valid positive integer input. (Don't expect this one to work for big numbers, it's probably the slowest recursive implementation possible).
  • (19) We declare a callback for basic_consume, the core of the RPC server. It's executed when the request is received. It does the work and sends the response back.
  • (32) We might want to run more than one server process. In order to spread the load equally over multiple servers we need to set theprefetch_count setting.

The code for rpc_client.py:

#!/usr/bin/env python
import pika
import uuid

class FibonacciRpcClient(object):
    def __init__(self):
        self.connection = pika.BlockingConnection(pika.ConnectionParameters(
                host='localhost'))

        self.channel = self.connection.channel()

        result = self.channel.queue_declare(exclusive=True)
        self.callback_queue = result.method.queue

        self.channel.basic_consume(self.on_response, no_ack=True,
                                   queue=self.callback_queue)

    def on_response(self, ch, method, props, body):
        if self.corr_id == props.correlation_id:
            self.response = body

    def call(self, n):
        self.response = None
        self.corr_id = str(uuid.uuid4())
        self.channel.basic_publish(exchange='',
                                   routing_key='rpc_queue',
                                   properties=pika.BasicProperties(
                                         reply_to = self.callback_queue,
                                         correlation_id = self.corr_id,
                                         ),
                                   body=str(n))
        while self.response is None:
            self.connection.process_data_events()
        return int(self.response)

fibonacci_rpc = FibonacciRpcClient()

print " [x] Requesting fib(30)"
response = fibonacci_rpc.call(30)
print " [.] Got %r" % (response,)

The client code is slightly more involved:
  • (7) We establish a connection, channel and declare an exclusive 'callback' queue for replies.
  • (16) We subscribe to the 'callback' queue, so that we can receive RPC responses.
  • (18) The 'on_response' callback executed on every response is doing a very simple job, for every response message it checks if thecorrelation_id is the one we're looking for. If so, it saves the response inself.response and breaks the consuming loop.
  • (23) Next, we define our main call method - it does the actual RPC request.
  • (24) In this method, first we generate a unique correlation_id number and save it - the 'on_response' callback function will use this value to catch the appropriate response.
  • (25) Next, we publish the request message, with two properties: reply_to and correlation_id.
  • (32) At this point we can sit back and wait until the proper response arrives.
  • (33) And finally we return the response back to the user.

開始rpc_server.py:

$ python rpc_server.py
 [x] Awaiting RPC requests
通過client來請求fibonacci數:

$ python rpc_client.py
 [x] Requesting fib(30)
      現在這個設計並不是唯一的,但是這個實現有以下優勢:
  • 如何RPC server太慢,你可以擴展它:啟動另外一個RPC server。
  • 在client端, 無所進行加鎖能同步操作,他所作的就是發送請求等待響應。

      我們的code還是挺簡單的,並沒有嚐試去解決更複雜和重要的問題,比如:

  • 如果沒有server在運行,client需要怎麼做?
  • RPC應該設置超時機製嗎?
  • 如果server運行出錯並且拋出了異常,需要將這個問題轉發到client嗎?
  • 需要邊界檢查嗎?

尊重原創,轉載請注明出處 anzhsoft: https://blog.csdn.net/anzhsoft/article/details/19633107

參考資料:

1. https://www.rabbitmq.com/tutorials/tutorial-six-python.html

最後更新:2017-04-03 12:55:12

  上一篇:go stl-map stl-pair
  下一篇:go RabbitMQ消息隊列(三):任務分發機製