Greenplum 跨庫數據JOIN需求 - dblink的使用和弊端以及解決方案
標簽
PostgreSQL , Greenplum , dblink
背景
Greenplum在許多企業中被用於數據倉庫,一個企業中通常會有統一的用戶管理係統,賬務係統;還有許多業務線。
數據被分成兩類,一類是業務相關的,一類是全公司統一的數據。
如果用戶將兩個部分數據分別存入不同的數據庫(單個實例可以創建多個數據庫),並且公共數據需要與業務數據JOIN時,你可能會想到dblink這個功能,通過DBLINK管理其他數據庫然後和本地數據進行JOIN。
如果你對實例和數據庫的概念不太理解,可以參考一下這篇文檔。
那麼到底dblink是否適合這個場景呢?
部署dblink on Greenplum
Greenplum默認並沒有打包dblink,所以需要部署一下。
下載與greenplum base postgresql 一致的postgresql源碼
例如現在greenplum base postgresql是8.3的版本。
cd postgresql-8.3/contrib/dblink/
vi Makefile
PG_CPPFLAGS = -I$(libpq_srcdir) -w
export PATH=/home/gpdb/bin:$PATH
USE_PGXS=1 make
USE_PGXS=1 make install
將dblink.so拷貝到所有節點的gp軟件目錄
/bin/mkdir -p '/home/digoal/gp/lib/postgresql'
/bin/sh /home/digoal/gp/lib/postgresql/pgxs/src/makefiles/../../config/install-sh -c -m 755 dblink.so '/home/digoal/gp/lib/postgresql/dblink.so'
/bin/sh /home/digoal/gp/lib/postgresql/pgxs/src/makefiles/../../config/install-sh -c -m 644 ./uninstall_dblink.sql '/home/digoal/gp/share/postgresql/contrib'
/bin/sh /home/digoal/gp/lib/postgresql/pgxs/src/makefiles/../../config/install-sh -c -m 644 dblink.sql '/home/digoal/gp/share/postgresql/contrib'
/bin/sh /home/digoal/gp/lib/postgresql/pgxs/src/makefiles/../../config/install-sh -c -m 644 ./README.dblink '/home/digoal/gp/doc/postgresql/contrib'
測試
需要使用dblink的數據庫,執行dblink.sql
psql db1 -f ./dblink.sql
創建2張測試表,注意他們的分布鍵,用於觀察。
create table tbl(id int);
create table tbl1(c1 int,id int);
postgres=# \d tbl
Table "public.tbl"
Column | Type | Modifiers
--------+---------+-----------
id | integer |
Distributed by: (id)
postgres=# \d tbl1
Table "public.tbl1"
Column | Type | Modifiers
--------+---------+-----------
c1 | integer |
id | integer |
Distributed by: (c1)
分別插入100萬測試數據
insert into tbl select generate_series(1,1000000);
insert into tbl1 select 1,generate_series(1,1000000);
測試1,原地JOIN
Redistribute Motion 3:3,表示從3個節點重分布到3個節點,說明原始數據來自3個節點。
Gather Motion 3:1,表示從3個節點匯聚到1個節點,
postgres=# explain analyze select count(*) from tbl join tbl1 on tbl.id=tbl1.id;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=72258.70..72258.71 rows=1 width=8)
Rows out: 1 rows with 648 ms to end, start offset by 17 ms.
-> Gather Motion 3:1 (slice2; segments: 3) (cost=72258.63..72258.68 rows=1 width=8)
Rows out: 3 rows at destination with 647 ms to first row, 648 ms to end, start offset by 17 ms.
-> Aggregate (cost=72258.63..72258.64 rows=1 width=8)
Rows out: Avg 1.0 rows x 3 workers. Max 1 rows (seg0) with 645 ms to end, start offset by 19 ms.
-> Hash Join (cost=23619.20..69756.61 rows=333603 width=0)
Hash Cond: tbl1.id = tbl.id
Rows out: Avg 333333.3 rows x 3 workers. Max 333385 rows (seg2) with 120 ms to first row, 560 ms to end, start offset by 19 ms.
Executor memory: 7813K bytes avg, 7814K bytes max (seg2).
Work_mem used: 7813K bytes avg, 7814K bytes max (seg2). Workfile: (0 spilling, 0 reused)
(seg2) Hash chain length 1.2 avg, 2 max, using 281103 of 524341 buckets.
因為兩個表的JOIN字段並不都是他們的分布鍵,所以其中一個表會選擇按JOIN字段進行重新分布,或者廣播全表。(視成本決定)
-> Redistribute Motion 3:3 (slice1; segments: 3) (cost=0.00..31125.27 rows=333603 width=4)
Hash Key: tbl1.id
Rows out: Avg 333333.3 rows x 3 workers at destination. Max 333385 rows (seg2) with 0.102 ms to first row, 286 ms to end, start offset by 139 ms.
-> Seq Scan on tbl1 (cost=0.00..11109.09 rows=333603 width=4)
Rows out: 1000000 rows (seg0) with 0.118 ms to first row, 191 ms to end, start offset by 21 ms.
-> Hash (cost=11109.09..11109.09 rows=333603 width=4)
Rows in: Avg 333333.3 rows x 3 workers. Max 333385 rows (seg2) with 118 ms to end, start offset by 22 ms.
-> Seq Scan on tbl (cost=0.00..11109.09 rows=333603 width=4)
Rows out: Avg 333333.3 rows x 3 workers. Max 333385 rows (seg2) with 0.027 ms to first row, 33 ms to end, start offset by 22 ms.
Slice statistics:
(slice0) Executor memory: 163K bytes.
(slice1) Executor memory: 257K bytes avg x 3 workers, 283K bytes max (seg0).
(slice2) Executor memory: 24788K bytes avg x 3 workers, 24788K bytes max (seg0). Work_mem: 7814K bytes max.
Statement statistics:
Memory used: 128000K bytes
Total runtime: 668.319 ms
(28 rows)
測試2,一張表JOIN另一個DBLINK的結果
從DBLINK結果的重分布信息(1:3),可以分析出這樣的結論
1. 可以肯定的是,DBLINK並沒有在每個數據節點執行,但是在哪個數據節點執行的,從計劃上看不出來。
2. 由於DBLINK沒有在所有節點執行,意味著,如果DBLINK返回的結果集很大的話,這個執行節點的壓力會較大。
postgres=# explain analyze select count(*) from tbl join (select * from dblink('dbname=postgres','select * from tbl1') AS t(c1 int,id int)) t on tbl.id=t.id;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=13691.18..13691.19 rows=1 width=8)
Rows out: 1 rows with 1673 ms to end, start offset by 7.751 ms.
-> Gather Motion 3:1 (slice2; segments: 3) (cost=13691.11..13691.17 rows=1 width=8)
Rows out: 3 rows at destination with 1669 ms to first row, 1673 ms to end, start offset by 7.752 ms.
-> Aggregate (cost=13691.11..13691.12 rows=1 width=8)
Rows out: Avg 1.0 rows x 3 workers. Max 1 rows (seg0) with 1670 ms to end, start offset by 11 ms.
-> Hash Join (cost=65.00..13688.61 rows=334 width=0)
Hash Cond: tbl.id = t.id
Rows out: Avg 333333.3 rows x 3 workers. Max 333385 rows (seg2) with 1469 ms to first row, 1629 ms to end, start offset by 11 ms.
Executor memory: 7813K bytes avg, 7814K bytes max (seg2).
Work_mem used: 7813K bytes avg, 7814K bytes max (seg2). Workfile: (0 spilling, 0 reused)
(seg2) Hash chain length 1.6 avg, 4 max, using 205910 of 262151 buckets.
-> Seq Scan on tbl (cost=0.00..11109.09 rows=333603 width=4)
Rows out: Avg 333333.3 rows x 3 workers. Max 333385 rows (seg2) with 0.039 ms to first row, 37 ms to end, start offset by 1479 ms.
-> Hash (cost=52.50..52.50 rows=334 width=4)
Rows in: Avg 333333.3 rows x 3 workers. Max 333385 rows (seg2) with 1468 ms to end, start offset by 12 ms.
重分布信息,可以看出信息是從1個節點重分布到3個節點的。
這裏沒有看到Gather Motion(即數據收到master的過程),是不是可以判斷dblink是在某個數據節點上被執行的?還不能。
-> Redistribute Motion 1:3 (slice1) (cost=0.00..52.50 rows=1000 width=4)
Hash Key: t.id
Rows out: Avg 333333.3 rows x 3 workers at destination. Max 333385 rows (seg2) with 1068 ms to first row, 1400 ms to end, start offset by 12 ms.
dblink調用信息,這裏看不出來它到底是在哪個節點調用的。也不知道是不是所有節點調用的。
-> Function Scan on dblink t (cost=0.00..12.50 rows=3000 width=4)
Rows out: 1000000 rows with 1066 ms to first row, 1217 ms to end, start offset by 12 ms.
Work_mem used: 8193K bytes.
Slice statistics:
(slice0) Executor memory: 163K bytes.
(slice1) Executor memory: 41138K bytes (entry db). Work_mem: 8193K bytes max.
(slice2) Executor memory: 20767K bytes avg x 3 workers, 20767K bytes max (seg0). Work_mem: 7814K bytes max.
Statement statistics:
Memory used: 128000K bytes
Total runtime: 1681.166 ms
(29 rows)
測試3,自定義function 1的調用和重分布
從重分布執行計劃結果看,自定義函數也隻在某個節點被調用。
create or replace function f() returns setof int as $$
select generate_series(1,100000);
$$ language sql strict;
postgres=# explain analyze select count(*) from tbl join (select * from f() as t(id)) t on tbl.id=t.id;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=13691.18..13691.19 rows=1 width=8)
Rows out: 1 rows with 276 ms to end, start offset by 8.441 ms.
-> Gather Motion 3:1 (slice2; segments: 3) (cost=13691.11..13691.17 rows=1 width=8)
Rows out: 3 rows at destination with 269 ms to first row, 276 ms to end, start offset by 8.442 ms.
-> Aggregate (cost=13691.11..13691.12 rows=1 width=8)
Rows out: Avg 1.0 rows x 3 workers. Max 1 rows (seg0) with 273 ms to end, start offset by 11 ms.
-> Hash Join (cost=65.00..13688.61 rows=334 width=0)
Hash Cond: tbl.id = t.id
Rows out: Avg 33333.3 rows x 3 workers. Max 33348 rows (seg0) with 177 ms to first row, 269 ms to end, start offset by 11 ms.
Executor memory: 782K bytes avg, 782K bytes max (seg0).
Work_mem used: 782K bytes avg, 782K bytes max (seg0). Workfile: (0 spilling, 0 reused)
(seg0) Hash chain length 1.0 avg, 1 max, using 33348 of 262151 buckets.
-> Seq Scan on tbl (cost=0.00..11109.09 rows=333603 width=4)
Rows out: Avg 333333.3 rows x 3 workers. Max 333385 rows (seg2) with 0.027 ms to first row, 31 ms to end, start offset by 188 ms.
-> Hash (cost=52.50..52.50 rows=334 width=4)
Rows in: Avg 33333.3 rows x 3 workers. Max 33348 rows (seg0) with 175 ms to end, start offset by 13 ms.
從一個節點重新分布到3個節點
-> Redistribute Motion 1:3 (slice1) (cost=0.00..52.50 rows=1000 width=4)
Hash Key: t.id
Rows out: Avg 33333.3 rows x 3 workers at destination. Max 33348 rows (seg0) with 92 ms to first row, 167 ms to end, start offset by 13 ms.
函數在某個節點被調用
-> Function Scan on f t (cost=0.00..12.50 rows=3000 width=4)
Rows out: 100000 rows with 93 ms to first row, 101 ms to end, start offset by 12 ms.
Work_mem used: 1025K bytes.
Slice statistics:
(slice0) Executor memory: 163K bytes.
(slice1) Executor memory: 5313K bytes (entry db). Work_mem: 1025K bytes max.
(slice2) Executor memory: 6431K bytes avg x 3 workers, 6431K bytes max (seg0). Work_mem: 782K bytes max.
Statement statistics:
Memory used: 128000K bytes
Total runtime: 284.298 ms
(29 rows)
測試4,自定義function 2的調用和重分布
某些情況會報錯,例如: 當函數中有訪問到數據庫表,並且需要與其他表進行JOIN時。
postgres=# create or replace function f() returns setof int as $$
select id from tbl1;
$$ language sql strict;
CREATE FUNCTION
postgres=# \set VERBOSITY verbose
postgres=# explain analyze select count(*) from tbl join (select * from f() as t(id)) t on tbl.id=t.id;
NOTICE: XX000: function cannot execute on segment because it accesses relation "public.tbl1" (functions.c:155) (entry db r10k04474.sqa.zmf:29999 pid=53723) (cdbdisp.c:1326)
DETAIL: SQL function "f" during startup
LOCATION: cdbdisp_finishCommand, cdbdisp.c:1326
postgres=# explain analyze select count(*) from f();
QUERY PLAN
------------------------------------------------------------------------------------------------------
Aggregate (cost=20.00..20.01 rows=1 width=8)
Rows out: 1 rows with 1383 ms to end, start offset by 0.071 ms.
-> Function Scan on f (cost=0.00..12.50 rows=3000 width=0)
Rows out: 1000000 rows with 1186 ms to first row, 1275 ms to end, start offset by 0.072 ms.
Work_mem used: 8193K bytes.
Slice statistics:
(slice0) Executor memory: 33064K bytes. Work_mem: 8193K bytes max.
Statement statistics:
Memory used: 128000K bytes
Total runtime: 1383.044 ms
(10 rows)
測試5,單獨調用dblink和自定義函數
從執行計劃可以看出,沒有Gather motion節點,說明dblink函數和自定義函數就是在master節點執行的。
postgres=# explain analyze select count(*) from dblink('dbname=postgres','select * from tbl1') as t(c1 int,id int);
QUERY PLAN
------------------------------------------------------------------------------------------------------
-- 注意這裏沒有Gather Motion節點,那說明dblink函數就是在master執行的
Aggregate (cost=20.00..20.01 rows=1 width=8)
Rows out: 1 rows with 1306 ms to end, start offset by 0.074 ms.
-> Function Scan on dblink t (cost=0.00..12.50 rows=3000 width=0)
Rows out: 1000000 rows with 1099 ms to first row, 1195 ms to end, start offset by 0.075 ms.
Work_mem used: 8193K bytes.
Slice statistics:
(slice0) Executor memory: 41029K bytes. Work_mem: 8193K bytes max.
Statement statistics:
Memory used: 128000K bytes
Total runtime: 1306.167 ms
(10 rows)
postgres=# explain analyze select count(*) from f() as t(id);
QUERY PLAN
----------------------------------------------------------------------------------------------------
-- 注意這裏沒有Gather Motion節點,那說明f()函數就是在master執行的
Aggregate (cost=20.00..20.01 rows=1 width=8)
Rows out: 1 rows with 826 ms to end, start offset by 0.072 ms.
-> Function Scan on f t (cost=0.00..12.50 rows=3000 width=0)
Rows out: 1000000 rows with 627 ms to first row, 718 ms to end, start offset by 0.072 ms.
Work_mem used: 8193K bytes.
Slice statistics:
(slice0) Executor memory: 33064K bytes. Work_mem: 8193K bytes max.
Statement statistics:
Memory used: 128000K bytes
Total runtime: 825.970 ms
(10 rows)
如果在數據節點執行,應該有Gather motion節點,例如
postgres=# explain analyze select * from tbl1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------
-- 數據從3個數據節點收到MASTER節點
Gather Motion 3:1 (slice1; segments: 3) (cost=0.00..11109.09 rows=1000809 width=8)
Rows out: 1000000 rows at destination with 3.191 ms to first row, 335 ms to end, start offset by 0.284 ms.
-> Seq Scan on tbl1 (cost=0.00..11109.09 rows=333603 width=8)
Rows out: 1000000 rows (seg0) with 0.032 ms to first row, 96 ms to end, start offset by 3.223 ms.
Slice statistics:
(slice0) Executor memory: 235K bytes.
(slice1) Executor memory: 139K bytes avg x 3 workers, 155K bytes max (seg0).
Statement statistics:
Memory used: 128000K bytes
Total runtime: 415.013 ms
(10 rows)
兩階段聚合的例子
postgres=# explain analyze select count(*) from tbl1;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------
-- master節點的聚合操作
Aggregate (cost=13611.18..13611.19 rows=1 width=8)
Rows out: 1 rows with 360 ms to end, start offset by 0.349 ms.
-- 數據從3個數據節點收到MASTER節點
-> Gather Motion 3:1 (slice1; segments: 3) (cost=13611.11..13611.17 rows=1 width=8)
Rows out: 3 rows at destination with 3.013 ms to first row, 360 ms to end, start offset by 0.350 ms.
-- 數據節點的聚合操作
-> Aggregate (cost=13611.11..13611.12 rows=1 width=8)
Rows out: Avg 1.0 rows x 3 workers. Max 1 rows (seg0) with 356 ms to end, start offset by 4.229 ms.
-> Seq Scan on tbl1 (cost=0.00..11109.09 rows=333603 width=0)
Rows out: 1000000 rows (seg0) with 0.028 ms to first row, 244 ms to end, start offset by 4.230 ms.
Slice statistics:
(slice0) Executor memory: 159K bytes.
(slice1) Executor memory: 163K bytes avg x 3 workers, 163K bytes max (seg0).
Statement statistics:
Memory used: 128000K bytes
Total runtime: 360.824 ms
(14 rows)
分布式數據庫兩階段聚合的原理請參考
《Postgres-XC customized aggregate introduction》
《Greenplum 最佳實踐 - 估值插件hll的使用(以及hll分式聚合函數優化)》
Greenplum dblink 弊端
目前dblink與普通的用戶自定義函數類似,並沒有和Greenplum的MPP架構進行適配,它們會在master節點被調用,如果dblink返回的結果集較大,master很容易成為瓶頸。
如果需要使用dblink與其他表進行JOIN,流程是這樣的。
1. 首先會在master調用dblink,
2. dblink執行的結果集會收到master節點
3. master節點將結果集重分布到數據節點,
4. 然後再與其他表進行JOIN。(好在JOIN並不會在master節點執行。)
當然,我們不排除gpdb社區未來會改造dblink,來適配MPP的架構。但是至少目前還存在以上弊端,(除非dblink返回的結果集很小,否則請謹慎使用)。
建議的方案
1. 建議數據放到一個數據庫中,使用不同的schema來區分不同的業務數據或公共數據。這樣的話在同一個數據庫中就可以任意的JOIN了,對master無傷害。
2. 如果不同業務一定要使用多個數據庫,那麼建議使用外部表作為公共表,這樣做也不會傷害MASTER,並且每個節點都可以並行的訪問外部表的數據。
例如gpfdist外部表,阿裏雲HybridDB的OSS外部表等。
外部表一旦寫入,就不可修改,如果公共數據經常變化,或者定期需要更新,(例如某些賬務係統,每天或定期會將用戶信息更新到Greenplum中)那麼建議使用一個字段來標示最新數據,同時低頻率的增量合並外部表。
例如
2.1. 隻寫 tbl_foreign_table_news(id int, xxx, xxx 最後更新時間)。
2.2. 低頻率的truncate tbl_foreign_table_origin,然後將tbl_foreign_table_news合並到 tbl_foreign_table_origin。
2.3. 用戶查詢tbl_foreign_table_origin即為公共數據。
3. 如果dblink獲取的結果集較小,那麼使用dblink作為臨時的方案,來實現實例內跨庫數據JOIN是沒有太大問題的。
阿裏雲HybridDB for PostgreSQL經典用法
參考
《Postgres-XC customized aggregate introduction》
《Greenplum 最佳實踐 - 估值插件hll的使用(以及hll分式聚合函數優化)》
最後更新:2017-05-07 07:57:21
上一篇:
IOS WebView控件詳解
下一篇:
Delphi原生Windows程序
網絡子係統86_inet協議族-l4向下(一)
室內定位技術助力智慧城市 構建物聯網化生活
Docker技術這些應用場景,你知道嗎?
解決The type or namespace name \'XXXX\' does not exist in the namespace \'XXXXXXXXX\' 的錯誤
poj 1484 Blowing Fuses
各位童鞋是腫麼來到這個世界上的鳥
奧委會主席巴赫與馬雲對談:阿裏巴巴能將奧運精神帶進科技時代
阿裏雲幸運券領取使用抽 IPad mini
關於數據采集工作的一些感受
(cljs/run-at (JSVM. :browser) "簡單類型可不簡單啊~")