OpenCV2.4版本的camshiftdemo.cpp的詳細注釋
要我怎麼感謝這位仁兄。。。
#include "opencv2/video/tracking.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/highgui/highgui.hpp" #include <iostream> #include <ctype.h> using namespace cv; using namespace std; Mat image; bool backprojMode = false; bool selectObject = false;//用來判斷是否選中,當鼠標左鍵按下時為true,左鍵鬆開時為false int trackObject = 0; bool showHist = true; Point origin;//選中的起點 Rect selection;//選中的區域 int vmin = 10, vmax = 256, smin = 30;//圖像掩膜需要的邊界常數 //鼠標事件響應函數,這個函數從按下左鍵時開始響應直到左鍵釋放 static void onMouse( int event, int x, int y, int, void* ) { if( selectObject ) { //選擇區域的x坐標選起點與當前點的最小值,保證鼠標不管向右下角還是左上角拉動都正確選擇 selection.x = MIN(x, origin.x); selection.y = MIN(y, origin.y); //獲得選擇區域的寬和高 selection.width = std::abs(x - origin.x); selection.height = std::abs(y - origin.y); //這條語句多餘,注釋掉不影響結果 // selection &= Rect(0, 0, image.cols, image.rows); } switch( event ) { case CV_EVENT_LBUTTONDOWN://按下鼠標時,捕獲點origin origin = Point(x,y); selection = Rect(x,y,0,0); selectObject = true;//這時switch前麵的if語句條件為true,執行該語句 break; case CV_EVENT_LBUTTONUP://鬆開鼠標時,捕獲width和height selectObject = false; if( selection.width > 0 && selection.height > 0 ) trackObject = -1;//重新計算直方圖 break; } } static void help()//打印控製按鍵說明 { cout << "\nThis is a demo that shows mean-shift based tracking\n" "You select a color objects such as your face and it tracks it.\n" "This reads from video camera (0 by default, or the camera number the user enters\n" "Usage: \n" " ./camshiftdemo [camera number]\n"; cout << "\n\nHot keys: \n" "\tESC - quit the program\n" "\tc - stop the tracking\n" "\tb - switch to/from backprojection view\n" "\th - show/hide object histogram\n" "\tp - pause video\n" "To initialize tracking, select the object with mouse\n"; } const char* keys = { "{1| | 0 | camera number}" }; int main( int argc, const char** argv ) { help(); VideoCapture cap; Rect trackWindow;//要跟蹤的窗口 int hsize = 16;//創建直方圖時要用的常量 float hranges[] = {0,180}; const float* phranges = hranges; CommandLineParser parser(argc, argv, keys); int camNum = parser.get<int>("1");//現在camNum = 0 cap.open(camNum); //攝像頭畫麵捕捉不成功則退出程序 if( !cap.isOpened() ) { help(); cout << "***Could not initialize capturing...***\n"; cout << "Current parameter's value: \n"; parser.printParams();//打印出cmd參數信息 return -1; } //關於顯示窗口的一些設置 namedWindow( "Histogram", 0 ); namedWindow( "CamShift Demo", 0 ); //設置鼠標事件,把鼠標響應與onMouse函數關聯起來 setMouseCallback( "CamShift Demo", onMouse, 0 ); //創建三個滑塊條,特定條件用滑塊條選擇不同參數能獲得較好的跟蹤效果 createTrackbar( "Vmin", "CamShift Demo", &vmin, 256, 0 ); createTrackbar( "Vmax", "CamShift Demo", &vmax, 256, 0 ); createTrackbar( "Smin", "CamShift Demo", &smin, 256, 0 ); //創建Mat變量,frame, hsv, hue, mask, hist, histimg, backproj;其中histimg初始化為200*300的零矩陣 Mat frame, hsv, hue, mask, hist, histimg = Mat::zeros(200, 320, CV_8UC3), backproj; bool paused = false; //主循環 for(;;) { if( !paused ) { cap >> frame;//從攝像頭輸入frame if( frame.empty() )//為空,跳出主循環 break; } frame.copyTo(image);//frame存入image if( !paused ) { cvtColor(image, hsv, CV_BGR2HSV);//將BGR轉換成HSV格式,存入hsv中,hsv是3通道 if( trackObject )//鬆開鼠標左鍵時,trackObject為-1,執行核心部分 { int _vmin = vmin, _vmax = vmax; //inRange用來檢查元素的取值範圍是否在另兩個矩陣的元素取值之間,返回驗證矩陣mask(0-1矩陣) //這裏用於製作掩膜板,隻處理像素值為H:0~180,S:smin~256, V:vmin~vmax之間的部分。mask是要求的,單通道 inRange(hsv, Scalar(0, smin, MIN(_vmin,_vmax)), Scalar(180, 256, MAX(_vmin, _vmax)), mask); int ch[] = {0, 0}; //type包含通道信息,例如CV_8UC3,而深度信息depth不包含通道信息,例如CV_8U. hue.create(hsv.size(), hsv.depth());//hue是單通道 mixChannels(&hsv, 1, &hue, 1, ch, 1);//將H分量拷貝到hue中,其他分量不拷貝。 if( trackObject < 0 ) { //roi為選中區域的矩陣,maskroi為0-1矩陣 Mat roi(hue, selection), maskroi(mask, selection); //繪製色調直方圖hist,僅限於用戶選定的目標矩形區域 calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &phranges); normalize(hist, hist, 0, 255, CV_MINMAX);//必須是單通道,hist是單通道。歸一化,範圍為0-255 trackWindow = selection; trackObject = 1;//trackObject置1,接下來就不需要再執行這個if塊了 histimg = Scalar::all(0);//用於顯示直方圖 //計算每個直方的寬度 int binW = histimg.cols / hsize;//hsize為16,共顯示16個 Mat buf(1, hsize, CV_8UC3);// for( int i = 0; i < hsize; i++ ) //直方圖每一項的顏色是根據項數變化的 buf.at<Vec3b>(i) = Vec3b(saturate_cast<uchar>(i*180./hsize), 255, 255); cvtColor(buf, buf, CV_HSV2BGR); //量化等級一共有16個等級,故循環16次,畫16個直方塊 for( int i = 0; i < hsize; i++ ) { int val = saturate_cast<int>(hist.at<float>(i)*histimg.rows/255);//獲取直方圖每一項的高 //畫直方圖。opencv中左上角為坐標原點 rectangle( histimg, Point(i*binW,histimg.rows), Point((i+1)*binW,histimg.rows - val), Scalar(buf.at<Vec3b>(i)), -1, 8 ); } } //根據直方圖hist計算整幅圖像的反向投影圖backproj,backproj與hue相同大小 calcBackProject(&hue, 1, 0, hist, backproj, &phranges); //計算兩個矩陣backproj、mask的每個元素的按位與,返回backproj backproj &= mask; //調用最核心的camshift函數 //TermCriteria是算法完成的條件 RotatedRect trackBox = CamShift(backproj, trackWindow, TermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 )); if( trackWindow.area() <= 1 ) { int cols = backproj.cols, rows = backproj.rows, r = (MIN(cols, rows) + 5)/6; trackWindow = Rect(trackWindow.x - r, trackWindow.y - r, trackWindow.x + r, trackWindow.y + r) & Rect(0, 0, cols, rows); } if( backprojMode )//轉換顯示方式,將backproj顯示出來 cvtColor( backproj, image, CV_GRAY2BGR ); //畫出橢圓,第二個參數是一個矩形,畫該矩形的內接圓 ellipse( image, trackBox, Scalar(0,0,255), 3, CV_AA ); } } else if( trackObject < 0 ) paused = false; if( selectObject && selection.width > 0 && selection.height > 0 ) { Mat roi(image, selection); bitwise_not(roi, roi); } imshow( "CamShift Demo", image ); imshow( "Histogram", histimg ); //每輪都要等待用戶的按鍵控製 char c = (char)waitKey(10); if( c == 27 )//"Esc"鍵,直接退出 break; switch(c) { case 'b'://轉換顯示方式 backprojMode = !backprojMode; break; case 'c'://停止追蹤 trackObject = 0; histimg = Scalar::all(0); break; case 'h'://隱藏或顯示直方圖 showHist = !showHist; if( !showHist ) destroyWindow( "Histogram" ); else namedWindow( "Histogram", 1 ); break; case 'p'://暫停 paused = !paused;//frame停止從攝像頭獲取圖像,隻顯示舊的圖像 break; default: ; } } return 0; }
OpenCV2.4版本的camshiftdemo.cpp的詳細注釋
最後更新:2017-04-03 05:39:52