閱讀926 返回首頁    go 阿裏雲 go 技術社區[雲棲]


c/c++測試函數的運行時間(八種方法)

目前,存在著各種計時函數,一般的處理都是先調用計時函數,記下當前時間tstart,然後處理一段程序,再調用計時函數,記下處理後的時間tend,再tend和tstart做差,就可以得到程序的執行時間,但是各種計時函數的精度不一樣.下麵對各種計時函數,做些簡單記錄.

void foo()
{
    long i;
    for (i=0;i<100000000;i++)
    {
        long a= 0;
        a = a+1;
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

方法1,time()獲取當前的係統時間,返回的結果是一個time_t類型,其實就是一個大整數,其值表示從CUT(Coordinated Universal Time)時間1970年1月1日00:00:00(稱為UNIX係統的Epoch時間)到當前時刻的秒數.

void test1()
{
    time_t start,stop;
    start = time(NULL);
    foo();//dosomething
    stop = time(NULL);
    printf("Use Time:%ld\n",(stop-start));
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

方法2,clock()函數返回從“開啟這個程序進程”到“程序中調用clock()函數”時之間的CPU時鍾計時單元(clock tick)數,在MSDN中稱之為掛鍾時間(wal-clock)常量CLOCKS_PER_SEC,它用來表示一秒鍾會有多少個時鍾計時單元。

void test2()
{
    double dur;
    clock_t start,end;
    start = clock();
    foo();//dosomething
    end = clock();
    dur = (double)(end - start);
    printf("Use Time:%f\n",(dur/CLOCKS_PER_SEC));
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

如果你想學習C/C++可以來這個群,首先是三三零,中間是八五九,最後是七六六,裏麵有大量的學習資料可以下載。

方法3,timeGetTime()函數以毫秒計的係統時間。該時間為從係統開啟算起所經過的時間,是windows api

void test3()
{
    DWORD t1,t2;
    t1 = timeGetTime();
    foo();//dosomething
    t2 = timeGetTime();
    printf("Use Time:%f\n",(t2-t1)*1.0/1000);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

方法4,QueryPerformanceCounter()這個函數返回高精確度性能計數器的值,它可以以微妙為單位計時.但是QueryPerformanceCounter()確切的精確計時的最小單位是與係統有關的,所以,必須要查詢係統以得到QueryPerformanceCounter()返回的嘀噠聲的頻率.QueryPerformanceFrequency()提供了這個頻率值,返回每秒嘀噠聲的個數.

void test4()
{
    LARGE_INTEGER t1,t2,tc;
    QueryPerformanceFrequency(&tc);
    QueryPerformanceCounter(&t1);
    foo();//dosomething
    QueryPerformanceCounter(&t2);
    printf("Use Time:%f\n",(t2.QuadPart - t1.QuadPart)*1.0/tc.QuadPart);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

方法5,GetTickCount返回(retrieve)從操作係統啟動到現在所經過(elapsed)的毫秒數,它的返回值是DWORD

void test5()
{
    DWORD t1,t2;
    t1 = GetTickCount();
    foo();//dosomething
    t2 = GetTickCount();
    printf("Use Time:%f\n",(t2-t1)*1.0/1000);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

方法6,RDTSC指令,在Intel Pentium以上級別的CPU中,有一個稱為“時間戳(Time Stamp)”的部件,它以64位無符號整型數的格式,記錄了自CPU上電以來所經過的時鍾周期數。由於目前的CPU主頻都非常高,因此這個部件可以達到納秒級的計時精度。這個精確性是上述幾種方法所無法比擬的.在Pentium以上的CPU中,提供了一條機器指令RDTSC(Read Time Stamp Counter)來讀取這個時間戳的數字,並將其保存在EDX:EAX寄存器對中。由於EDX:EAX寄存器對恰好是Win32平台下C++語言保存函數返回值的寄存器,所以我們可以把這條指令看成是一個普通的函數調用,因為RDTSC不被C++的內嵌匯編器直接支持,所以我們要用_emit偽指令直接嵌入該指令的機器碼形式0X0F、0X31

inline unsigned __int64 GetCycleCount()
{
    __asm
    {
        _emit 0x0F;
        _emit 0x31;
    }
}

void test6()
{
    unsigned long t1,t2;
    t1 = (unsigned long)GetCycleCount();
    foo();//dosomething
    t2 = (unsigned long)GetCycleCount();
    printf("Use Time:%f\n",(t2 - t1)*1.0/FREQUENCY);   //FREQUENCY指CPU的頻率
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

方法7,gettimeofday() linux環境下的計時函數,int gettimeofday ( struct timeval * tv , struct timezone * tz ),gettimeofday()會把目前的時間有tv所指的結構返回,當地時區的信息則放到tz所指的結構中.

//timeval結構定義為:
struct timeval{
long tv_sec; /*秒*/
long tv_usec; /*微秒*/
};
//timezone 結構定義為:
struct timezone{
int tz_minuteswest; /*和Greenwich 時間差了多少分鍾*/
int tz_dsttime; /*日光節約時間的狀態*/
};
void test7()
{
    struct timeval t1,t2;
    double timeuse;
    gettimeofday(&t1,NULL);
    foo();
    gettimeofday(&t2,NULL);
    timeuse = t2.tv_sec - t1.tv_sec + (t2.tv_usec - t1.tv_usec)/1000000.0;
    printf("Use Time:%f\n",timeuse);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

方法8,linux環境下,用RDTSC指令計時.與方法6是一樣的.隻不過在linux實現方式有點差異.

#if defined (__i386__)
static __inline__ unsigned long long GetCycleCount(void)
{
        unsigned long long int x;
        __asm__ volatile("rdtsc":"=A"(x));
        return x;
}
#elif defined (__x86_64__)
static __inline__ unsigned long long GetCycleCount(void)
{
        unsigned hi,lo;
        __asm__ volatile("rdtsc":"=a"(lo),"=d"(hi));
        return ((unsigned long long)lo)|(((unsigned long long)hi)<<32);
}
#endif

void test8()
{
        unsigned long t1,t2;
        t1 = (unsigned long)GetCycleCount();
        foo();//dosomething
        t2 = (unsigned long)GetCycleCount();
        printf("Use Time:%f\n",(t2 - t1)*1.0/FREQUENCY); //FREQUENCY  CPU的頻率
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

 總結,方法1,2,7,8可以在linux環境下執行,方法1,2,3,4,5,6可以在windows環境下執行.其中,timeGetTime()和GetTickCount()的返回值類型為DWORD,當統計的毫妙數過大時,將會使結果歸0,影響統計結果. 
測試結果,windows環境下,主頻為1.6GHz,單位為秒.

1 Use Time:0 
2 Use Time:0.390000 
3 Use Time:0.388000 
4 Use Time:0.394704 
5 Use Time:0.407000 
6 Use Time:0.398684

最後更新:2017-04-20 16:30:39

  上一篇:go 4月20日雲棲精選夜讀:阿裏雲發布飛天敏捷版 支持Docker企業版
  下一篇:go SQLServer IN Windows Container初探