閱讀545 返回首頁    go 阿裏雲 go 技術社區[雲棲]


PgSQL · 最佳實踐 · CPU滿問題處理

前言

在數據庫運維當中,一個DBA比較常遇到又比較緊急的問題,就是突發的CPU滿(CPU利用率達到100%),導致業務停滯。DBA不一定非常熟悉業務實現邏輯,也不能掌控來自應用的變更或負載變化情況。 所以,遇到CPU滿,往往隻能從後端數據庫開始排查,追溯到具體SQL,最終定位到業務層。這裏我們總結下這個問題具體的處理方法。

查看連接數變化

CPU利用率到達100%,首先懷疑,是不是業務高峰活躍連接陡增,而數據庫預留的資源不足造成的結果。我們需要查看下,問題發生時,活躍的連接數是否比平時多很多。對於RDS for PG,數據庫上的連接數變化,可以從控製台的監控信息中看到。而當前活躍的連接數可以直接連接數據庫,使用下列查詢語句得到:

select count( * ) from pg_stat_activity where state not like '%idle';

追蹤慢SQL

如果活躍連接數的變化處於正常範圍,則很大概率可能是當時有性能很差的SQL被大量執行導致。由於RDS有慢SQL日誌,我們可以通過這個日誌,定位到當時比較耗時的SQL來進一步做分析。但通常問題發生時,整個係統都處於停滯狀態,所有SQL都慢下來,當時記錄的慢SQL可能非常多,並不容易排查罪魁禍首。這裏我們介紹幾種在問題發生時,即介入追查慢SQL的方法。

1. 第一種方法是使用pg_stat_statements插件定位慢SQL,步驟如下。

1.1. 如果沒有創建這個插件,需要手動創建。我們要利用插件和數據庫係統裏麵的計數信息(如SQL執行時間累積等),而這些信息是不斷累積的,包含了曆史信息。為了更方便的排查當前的CPU滿問題,我們要先重置計數器。

create extension pg_stat_statements;
select pg_stat_reset();
select pg_stat_statements_reset();

1.2. 等待一段時間(例如1分鍾),使計數器積累足夠的信息。

1.3. 查詢最耗時的SQL(一般就是導致問題的直接原因)。

select * from pg_stat_statements order by total_time desc limit 5;

1.4. 查詢讀取Buffer次數最多的SQL,這些SQL可能由於所查詢的數據沒有索引,而導致了過多的Buffer讀,也同時大量消耗了CPU。

select * from pg_stat_statements order by shared_blks_hit+shared_blks_read desc limit 5;

2. 第二種方法是,直接通過pg_stat_activity視圖,利用下麵的查詢,查看當前長時間執行,一直不結束的SQL。這些SQL對應造成CPU滿,也有直接嫌疑。

 select datname, usename, client_addr, application_name, state, backend_start, xact_start, xact_stay, query_start, query_stay, replace(query, chr(10), ' ') as query from (select pgsa.datname as datname, pgsa.usename as usename, pgsa.client_addr client_addr, pgsa.application_name as application_name, pgsa.state as state, pgsa.backend_start as backend_start, pgsa.xact_start as xact_start, extract(epoch from (now() - pgsa.xact_start)) as xact_stay, pgsa.query_start as query_start, extract(epoch from (now() - pgsa.query_start)) as query_stay , pgsa.query as query from pg_stat_activity as pgsa where pgsa.state != 'idle' and pgsa.state != 'idle in transaction' and pgsa.state != 'idle in transaction (aborted)') idleconnections order by query_stay desc limit 5;

3. 第3種方法,是從數據表上表掃描(Table Scan)的信息開始查起,查找缺失索引的表。數據表如果缺失索引,大部分熱數據又都在內存時(例如內存8G,熱數據6G),此時數據庫隻能使用表掃描,並需要處理已在內存中的大量的無關記錄,而耗費大量CPU。特別是對於表記錄數超100的表,一次表掃描占用大量CPU(基本把一個CPU占滿),多個連接並發(例如上百連接),把所有CPU占滿。

3.1. 通過下麵的查詢,查出使用表掃描最多的表:

select * from pg_stat_user_tables where n_live_tup > 100000 and seq_scan > 0 order by seq_tup_read desc limit 10;

3.2. 查詢當前正在運行的訪問到上述表的慢查詢:

select * from pg_stat_activity where query ilike '%<table name>%' and query_start - now() > interval '10 seconds';

3.3. 也可以通過pg_stat_statements插件定位涉及到這些表的查詢:

select * from pg_stat_statements where query ilike '%<table>%'order by shared_blks_hit+shared_blks_read desc limit 3;

處理慢SQL

對於上麵的方法查出來的慢SQL,首先需要做的可能是Cancel或Kill掉他們,使業務先恢複:

select pg_cancel_backend(pid) from pg_stat_activity where  query like '%<query text>%' and pid != pg_backend_pid();
select pg_terminate_backend(pid) from pg_stat_activity where  query like '%<query text>%' and pid != pg_backend_pid();

如果這些SQL確實是業務上必需的,則需要對他們做優化。這方麵有“三板斧”:

1. 對查詢涉及的表,執行ANALYZE <table>或VACUUM ANZLYZE <table>,更新表的統計信息,使查詢計劃更準確。注意,為避免對業務影響,最好在業務低峰執行。

2. 執行explain 或explain (buffers true, analyze true, verbose true) 命令,查看SQL的執行計劃(注意,前者不會實際執行SQL,後者會實際執行而且能得到詳細的執行信息),對其中的Table Scan涉及的表,建立索引。

3. 重新編寫SQL,去除掉不必要的子查詢、改寫UNION ALL、使用JOIN CLAUSE固定連接順序等到,都是進一步深度優化SQL的手段,這裏不再深入說明。

總結

需要說明的是,這些方法對於RDS for PPAS產品同樣適用,但在使用我們所列的命令時,由於權限限製,需要把上麵提到的視圖、函數、命令做如下轉換:

pg_stat_statements_reset() => rds_pg_stat_statements_reset()

pg_stat_statements => rds_pg_stat_statements()

pg_stat_reset() => rds_pg_stat_reset()

pg_cancel_backend() => rds_pg_cancel_backend()

pg_terminate_backend() => rds_pg_terminate_backend()

pg_stat_activity => rds_pg_stat_activity()

create extension pg_stat_statements => rds_manage_extension('create', 'pg_stat_statements')

上麵我們分析了處理CPU滿,追查問題SQL的一些方法。大家可以按部就班的嚐試我們列出的命令,定位問題。

最後更新:2017-07-21 09:03:13

  上一篇:go  MySQL · 源碼分析 · InnoDB 異步IO工作流程
  下一篇:go  MySQL · 實現分析 · HybridDB for MySQL 數據壓縮