scikit-learn学习之神经网络算法
本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正
转载请注明出处,谢谢
======================================================================
scikit-learn博主使用的是0.17版本,是稳定版,当然现在有0.18发行版,两者还是有区别的,感兴趣的可以自己官网上查看
scikit-learn0.17(and 之前)上对于Neural Network算法 的支持仅限于 BernoulliRBM
scikit-learn0.18上对于Neural Network算法有三个 neural_network.BernoulliRBM ,neural_network.MLPClassifier,neural_network.MLPRgression
具体可参考:点击阅读
1:神经网络算法简介
2:Backpropagation算法详细介绍
3:非线性转化方程举例
4:自己实现神经网络算法NeuralNetwork
5:基于NeuralNetwork的XOR实例
6:基于NeuralNetwork的手写数字识别实例
7:scikit-learn中BernoulliRBM使用实例
8:scikit-learn中的手写数字识别实例
一:神经网络算法简介
1:背景
以人脑神经网络为启发,历史上出现过很多版本,但最着名的是backpropagation
2:多层向前神经网络(Multilayer Feed-Forward Neural Network)
多层向前神经网络组成部分
输入层(input layer),隐藏层(hiddenlayer),输出层(output layer)
3:设计神经网络结构
4:算法验证——交叉验证法(Cross- Validation)
解读: 有一组输入集A,B,可以分成三组,第一次以第一组为训练集,求出一个准确度,第二次以第二组作为训练集,求出一个准确度,求出准确度,第三次以第三组作为训练集,求出一个准确度,然后对三个准确度求平均值
二:Backpropagation算法详细介绍
1:通过迭代性来处理训练集中的实例
2:输入层输入数
经过权重计算得到第一层的数据,第一层的数据作为第二层的输入,再次经过权重计算得到结果,结果和真实值之间是存在误差的,然后根据误差,反向的更新每两个连接之间的权重
3:算法详细介绍
输入:D : 数据集,| 学习率(learning rate),一个多层前向神经网络







4:结合实例讲解算法
0.9对用的是L,学习率
三:非线性转化方程举例
在二中Activation Function对计算结果进行转换,得到下一层的输入,这里用到的f函数就是非线性转换函数,Sigmoid函数(S曲线)用来做f函数,Sigmoid函数是一类函数,只要S曲线满足一定的性质就可以作为activation Function函数
Sigmoid函数:
常见的Sigmoid函数
1:双曲函数(参考百科,下面以tan函数为例)
双曲函数的导数为:
2:逻辑函数(Logistic函数)
逻辑函数的导数形式为:
四:自己实现神经网络算法NeuralNetwork
建立NeuralNetwork.py,添加以下代码
- #coding:utf-8
- '''''
- Created on 2016/4/27
- @author: Gamer Think
- '''
- import numpy as np
- #定义双曲函数和他们的导数
- def tanh(x):
- return np.tanh(x)
- def tanh_deriv(x):
- return 1.0 - np.tanh(x)**2
- def logistic(x):
- return 1/(1 + np.exp(-x))
- def logistic_derivative(x):
- return logistic(x)*(1-logistic(x))
- #定义NeuralNetwork 神经网络算法
- class NeuralNetwork:
- #初始化,layes表示的是一个list,eg[10,10,3]表示第一层10个神经元,第二层10个神经元,第三层3个神经元
- def __init__(self, layers, activation='tanh'):
- """
- :param layers: A list containing the number of units in each layer.
- Should be at least two values
- :param activation: The activation function to be used. Can be
- "logistic" or "tanh"
- """
- if activation == 'logistic':
- self.activation = logistic
- self.activation_deriv = logistic_derivative
- elif activation == 'tanh':
- self.activation = tanh
- self.activation_deriv = tanh_deriv
- self.weights = []
- #循环从1开始,相当于以第二层为基准,进行权重的初始化
- for i in range(1, len(layers) - 1):
- #对当前神经节点的前驱赋值
- self.weights.append((2*np.random.random((layers[i - 1] + 1, layers[i] + 1))-1)*0.25)
- #对当前神经节点的后继赋值
- self.weights.append((2*np.random.random((layers[i] + 1, layers[i + 1]))-1)*0.25)
- #训练函数 ,X矩阵,每行是一个实例 ,y是每个实例对应的结果,learning_rate 学习率,
- # epochs,表示抽样的方法对神经网络进行更新的最大次数
- def fit(self, X, y, learning_rate=0.2, epochs=10000):
- X = np.atleast_2d(X) #确定X至少是二维的数据
- temp = np.ones([X.shape[0], X.shape[1]+1]) #初始化矩阵
- temp[:, 0:-1] = X # adding the bias unit to the input layer
- X = temp
- y = np.array(y) #把list转换成array的形式
- for k in range(epochs):
- #随机选取一行,对神经网络进行更新
- i = np.random.randint(X.shape[0])
- a = [X[i]]
- #完成所有正向的更新
- for l in range(len(self.weights)):
- a.append(self.activation(np.dot(a[l], self.weights[l])))
- #
- error = y[i] - a[-1]
- deltas = [error * self.activation_deriv(a[-1])]
- #开始反向计算误差,更新权重
- for l in range(len(a) - 2, 0, -1): # we need to begin at the second to last layer
- deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l]))
- deltas.reverse()
- for i in range(len(self.weights)):
- layer = np.atleast_2d(a[i])
- delta = np.atleast_2d(deltas[i])
- self.weights[i] += learning_rate * layer.T.dot(delta)
- #预测函数
- def predict(self, x):
- x = np.array(x)
- temp = np.ones(x.shape[0]+1)
- temp[0:-1] = x
- a = temp
- for l in range(0, len(self.weights)):
- a = self.activation(np.dot(a, self.weights[l]))
- return a
五:基于NeuralNetwork的XOR(异或)示例
代码如下:
- <span style="font-size:18px;">#coding:utf-8
- '''''
- Created on 2016/4/27
- @author: Gamer Think
- '''
- import numpy as np
- from NeuralNetwork import NeuralNetwork
- '''''
- [2,2,1]
- 第一个2:表示 数据的纬度,因为是二维的,表示两个神经元,所以是2
- 第二个2:隐藏层数据纬度也是2,表示两个神经元
- 1:表示输入为一个神经元
- tanh:表示用双曲函数里的tanh函数
- '''
- nn = NeuralNetwork([2,2,1], 'tanh')
- X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
- y = np.array([0, 1, 1, 0])
- nn.fit(X, y)
- for i in [[0, 0], [0, 1], [1, 0], [1,1]]:
- print(i,nn.predict(i)) </span>
([0, 0], array([ 0.02150876]))
([0, 1], array([ 0.99857695]))
([1, 0], array([ 0.99859837]))
([1, 1], array([ 0.04854689]))
六:基于NeuralNetwork的手写数字识别示例
代码如下:
- <span style="font-size:18px;">import numpy as np
- from sklearn.datasets import load_digits
- from sklearn.metrics import confusion_matrix,classification_report
- from sklearn.preprocessing import LabelBinarizer
- from sklearn.cross_validation import train_test_split
- from NeuralNetwork import NeuralNetwork
- digits = load_digits()
- X = digits.data
- y = digits.target
- X -= X.min()
- X /= X.max()
- nn =NeuralNetwork([64,100,10],'logistic')
- X_train, X_test, y_train, y_test = train_test_split(X, y)
- labels_train = LabelBinarizer().fit_transform(y_train)
- labels_test = LabelBinarizer().fit_transform(y_test)
- print "start fitting"
- nn.fit(X_train,labels_train,epochs=3000)
- predictions = []
- for i in range(X_test.shape[0]):
- o = nn.predict(X_test[i])
- predictions.append(np.argmax(o))
- print confusion_matrix(y_test, predictions)
- print classification_report(y_test, predictions) </span>
七:scikit-learn中的BernoulliRBM使用实例
- <span style="font-family:Microsoft YaHei;font-size:18px;">from sklearn.neural_network import BernoulliRBM
- X = [[0,0],[1,1]]
- y = [0,1]
- clf = BernoulliRBM().fit(X,y)
- print clf</span>
输出结果为:
BernoulliRBM(batch_size=10, learning_rate=0.1, n_components=256, n_iter=10,
random_state=None, verbose=0)
注意此模块不支持predict函数,这与以往的算法有很大的不同
八:scikit-learn中的手写数字识别实例
- <span style="font-family:Microsoft YaHei;font-size:18px;">import numpy as np
- import matplotlib.pyplot as plt
- from scipy.ndimage import convolve
- from sklearn import linear_model, datasets, metrics
- from sklearn.cross_validation import train_test_split
- from sklearn.neural_network import BernoulliRBM
- from sklearn.pipeline import Pipeline
- ###############################################################################
- # Setting up
- def nudge_dataset(X, Y):
- """
- This produces a dataset 5 times bigger than the original one,
- by moving the 8x8 images in X around by 1px to left, right, down, up
- """
- direction_vectors = [
- [[0, 1, 0],
- [0, 0, 0],
- [0, 0, 0]],
- [[0, 0, 0],
- [1, 0, 0],
- [0, 0, 0]],
- [[0, 0, 0],
- [0, 0, 1],
- [0, 0, 0]],
- [[0, 0, 0],
- [0, 0, 0],
- [0, 1, 0]]]
- shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant',
- weights=w).ravel()
- X = np.concatenate([X] +
- [np.apply_along_axis(shift, 1, X, vector)
- for vector in direction_vectors])
- Y = np.concatenate([Y for _ in range(5)], axis=0)
- return X, Y
- # Load Data
- digits = datasets.load_digits()
- X = np.asarray(digits.data, 'float32')
- X, Y = nudge_dataset(X, digits.target)
- X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling
- X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
- test_size=0.2,
- random_state=0)
- # Models we will use
- logistic = linear_model.LogisticRegression()
- rbm = BernoulliRBM(random_state=0, verbose=True)
- classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)])
- ###############################################################################
- # Training
- # Hyper-parameters. These were set by cross-validation,
- # using a GridSearchCV. Here we are not performing cross-validation to
- # save time.
- rbm.learning_rate = 0.06
- rbm.n_iter = 20
- # More components tend to give better prediction performance, but larger
- # fitting time
- rbm.n_components = 100
- logistic.C = 6000.0
- # Training RBM-Logistic Pipeline
- classifier.fit(X_train, Y_train)
- # Training Logistic regression
- logistic_classifier = linear_model.LogisticRegression(C=100.0)
- logistic_classifier.fit(X_train, Y_train)
- ###############################################################################
- # Evaluation
- print()
- print("Logistic regression using RBM features:\n%s\n" % (
- metrics.classification_report(
- Y_test,
- classifier.predict(X_test))))
- print("Logistic regression using raw pixel features:\n%s\n" % (
- metrics.classification_report(
- Y_test,
- logistic_classifier.predict(X_test))))
- ###############################################################################
- # Plotting
- plt.figure(figsize=(4.2, 4))
- for i, comp in enumerate(rbm.components_):
- plt.subplot(10, 10, i + 1)
- plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r,
- interpolation='nearest')
- plt.xticks(())
- plt.yticks(())
- plt.suptitle('100 components extracted by RBM', fontsize=16)
- plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)
- plt.show()</span>
显示结果:
附:博主对于前边的原理其实很是明白了,但是对于scikit-learn实现手写数字识别系统这个代码优点迷乱,如果路过大神明白的,可以给小弟指点迷津
- <span style="font-family:Microsoft YaHei;font-size:18px;">import numpy as np
- from sklearn.datasets import load_digits
- from sklearn.metrics import confusion_matrix,classification_report
- from sklearn.preprocessing import LabelBinarizer
- from sklearn.cross_validation import train_test_split
- from NeuralNetwork import NeuralNetwork
- digits = load_digits()
- X = digits.data
- y = digits.target
- X -= X.min()
- X /= X.max()
- nn =NeuralNetwork([64,100,10],'logistic')
- X_train, X_test, y_train, y_test = train_test_split(X, y)
- labels_train = LabelBinarizer().fit_transform(y_train)
- labels_test = LabelBinarizer().fit_transform(y_test)
- print "start fitting"
- nn.fit(X_train,labels_train,epochs=3000)
- predictions = []
- for i in range(X_test.shape[0]):
- o = nn.predict(X_test[i])
- predictions.append(np.argmax(o))
- print confusion_matrix(y_test, predictions)
- print classification_report(y_test, predictions) </span>
最后更新:2017-06-25 22:04:20