阿裏雲HybridDB for PG實踐 - 行存、列存,堆表、AO表的原理和選擇
標簽
PostgreSQL , Greenplum , 向量計算 , 行存儲 , 列存 , AO表
背景
Greenplum支持行存和列存,支持堆表和AO表,那麼他們有什麼不同,如何選擇呢?
行存和列存的原理
1、行存,以行為形式組織存儲,一行是一個tuple,存在一起。當需要讀取某列時,需要將這列前麵的所有列都進行deform,所以訪問第一列和訪問最後一列的成本實際上是不一樣的。
在這篇文檔中,有deform的詳細介紹。《PostgreSQL 向量化執行插件(瓦片式實現) 10x提速OLAP》
行存小結:
全表掃描要掃描更多的數據塊。
壓縮比較低。
讀取任意列的成本不一樣,越靠後的列,成本越高。
不適合向量計算、JIT架構。(簡單來說,就是不適合批處理形式的計算)
需要REWRITE表時,需要對全表進行REWRITE,例如加字段有默認值。
2、列存,以列為形式組織存儲,每列對應一個或一批文件。讀取任一列的成本是一樣的,但是如果要讀取多列,需要訪問多個文件,訪問的列越多,開銷越大。
列存小結:
壓縮比高。
僅僅支持AO存儲(後麵會將)。
讀取任意列的成本是一樣的。
非常適合向量計算、JIT架構。對大批量數據的訪問和統計,效率更高。
讀取很多列時,由於需要訪問更多的文件,成本更高。例如查詢明細。
需要REWRITE表時,不需要對全表操作,例如加字段有默認值,隻是添加字段對應的那個文件。
什麼時候選擇行存
如果OLTP的需求偏多,例如經常需要查詢表的明細(輸出很多列),需要更多的更新和刪除操作時。可以考慮行存。
什麼時候選擇列存
如果OLAP的需求偏多,經常需要對數據進行統計時,選擇列存。
需要比較高的壓縮比時,選擇列存。
如果用戶有混合需求,可以采用分區表,例如按時間維度的需求分區,近期的數據明細查詢多,那就使用行存,對曆史的數據統計需求多那就使用列存。
堆表和AO表的原理
1、堆表,實際上就是PG的堆存儲,堆表的所有變更都會產生REDO,可以實現時間點恢複。但是堆表不能實現邏輯增量備份(因為表的任意一個數據塊都有可能變更,不方便通過堆存儲來記錄位點。)。
一個事務結束時,通過clog以及REDO來實現它的可靠性。同時支持通過REDO來構建MIRROR節點實現數據冗餘。
2、AO表,看名字就知道,隻追加的存儲,刪除更新數據時,通過另一個BITMAP文件來標記被刪除的行,通過bit以及偏移對齊來判定AO表上的某一行是否被刪除。
事務結束時,需要調用FSYNC,記錄最後一次寫入對應的數據塊的偏移。(並且這個數據塊即使隻有一條記錄,下次再發起事務又會重新追加一個數據塊)同時發送對應的數據塊給MIRROR實現數據冗餘。
因此AO表不適合小事務,因為每次事務結束都會FSYNC,同時事務結束後這個數據塊即使有空餘也不會被複用。(你可以測試一下,AO表單條提交的IO放大很嚴重)。
雖然如此,AO表非常適合OLAP場景,批量的數據寫入,高壓縮比,邏輯備份支持增量備份,因此每次記錄備份到的偏移量即可。加上每次備份全量的BITMAP刪除標記(很小)。
什麼時候選擇堆表
當數據寫入時,小事務偏多時選擇堆表。
當需要時間點恢複時,選擇堆表。
什麼時候選擇AO表
當需要列存時,選擇AO表。
當數據批量寫入時,選擇AO表。
測試對比行存deform和列存的性能差別
1、創建一個函數,用於創建400列的表(行存堆表、AO行存表、AO列存表)。
create or replace function f(name, int, text) returns void as $$
declare
res text := '';
begin
for i in 1..$2 loop
res := res||'c'||i||' int8,';
end loop;
res := rtrim(res, ',');
if $3 = 'ao_col' then
res := 'create table '||$1||'('||res||') with (appendonly=true, blocksize=8192, compresstype=none, orientation=column)';
elsif $3 = 'ao_row' then
res := 'create table '||$1||'('||res||') with (appendonly=true, blocksize=8192, orientation=row)';
elsif $3 = 'heap_row' then
res := 'create table '||$1||'('||res||') with (appendonly=false)';
else
raise notice 'use ao_col, ao_row, heap_row as $3';
return;
end if;
execute res;
end;
$$ language plpgsql;
2、創建表如下
postgres=# select f('tbl_ao_col', 400, 'ao_col');
postgres=# select f('tbl_ao_row', 400, 'ao_row');
postgres=# select f('tbl_heap_row', 400, 'heap_row');
3、創建1個函數,用於填充數據,其中第一個和最後3個字段為測試數據的字段,其他都填充1。
create or replace function f_ins1(name, int, int8) returns void as $$
declare
res text := '';
begin
for i in 1..($2-4) loop
res := res||'1,';
end loop;
res := 'id,'||res;
res := rtrim(res, ',');
res := 'insert into '||$1||' select '||res||'id,random()*10000,random()*100000 from generate_series(1,'||$3||') t(id)';
execute res;
end;
$$ language plpgsql;
4、填充數據
postgres=# select f_ins1('tbl_ao_col',400,1000000);
5、創建1個函數,用於填充數據,其中前4個字段為測試數據的字段,其他都填充1。
create or replace function f_ins2(name, int, int8) returns void as $$
declare
res text := '';
begin
for i in 1..($2-4) loop
res := res||'1,';
end loop;
res := 'id,id,random()*10000,random()*100000,'||res;
res := rtrim(res, ',');
res := 'insert into '||$1||' select '||res||' from generate_series(1,'||$3||') t(id)';
execute res;
end;
$$ language plpgsql;
6、填充數據
postgres=# select f_ins1('tbl_ao_col',400,1000000);
f_ins1
--------
(1 row)
postgres=# insert into tbl_ao_row select * from tbl_ao_col;
INSERT 0 1000000
postgres=# insert into tbl_heap_row select * from tbl_ao_col;
INSERT 0 1000000
7、表分析
postgres=# analyze tbl_ao_col ;
ANALYZE
postgres=# analyze tbl_ao_row;
ANALYZE
postgres=# analyze tbl_heap_row;
ANALYZE
8、表大小
postgres=# select pg_size_pretty(pg_relation_size('tbl_ao_col'));
pg_size_pretty
----------------
3060 MB
(1 row)
postgres=# select pg_size_pretty(pg_relation_size('tbl_ao_row'));
pg_size_pretty
----------------
3117 MB
(1 row)
postgres=# select pg_size_pretty(pg_relation_size('tbl_heap_row'));
pg_size_pretty
----------------
3473 MB
(1 row)
9、行存堆表,前麵幾個字段的統計
postgres=# explain analyze select c2,count(*),sum(c3),avg(c3),min(c3),max(c3) from tbl_heap_row group by c2;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Gather Motion 48:1 (slice2; segments: 48) (cost=136132.40..136132.42 rows=1 width=96)
Rows out: 1 rows at destination with 135 ms to end, start offset by 1.922 ms.
-> HashAggregate (cost=136132.40..136132.42 rows=1 width=96)
Group By: tbl_heap_row.c2
Rows out: 1 rows (seg42) with 0.002 ms to first row, 36 ms to end, start offset by 48 ms.
-> Redistribute Motion 48:48 (slice1; segments: 48) (cost=136132.35..136132.37 rows=1 width=96)
Hash Key: tbl_heap_row.c2
Rows out: 48 rows at destination (seg42) with 53 ms to end, start offset by 48 ms.
-> HashAggregate (cost=136132.35..136132.35 rows=1 width=96)
Group By: tbl_heap_row.c2
Rows out: Avg 1.0 rows x 48 workers. Max 1 rows (seg0) with 0.008 ms to first row, 1.993 ms to end, start offset by 48 ms.
-> Seq Scan on tbl_heap_row (cost=0.00..121134.54 rows=20831 width=16)
Rows out: Avg 20833.3 rows x 48 workers. Max 20854 rows (seg42) with 40 ms to first row, 73 ms to end, start offset by 50 ms.
Slice statistics:
(slice0) Executor memory: 345K bytes.
(slice1) Executor memory: 751K bytes avg x 48 workers, 751K bytes max (seg0).
(slice2) Executor memory: 359K bytes avg x 48 workers, 374K bytes max (seg42).
Statement statistics:
Memory used: 128000K bytes
Settings: optimizer=off
Optimizer status: legacy query optimizer
Total runtime: 138.524 ms
(22 rows)
10、行存堆表,末尾幾個字段的統計
postgres=# explain analyze select c398,count(*),sum(c399),avg(c399),min(c399),max(c399) from tbl_heap_row group by c398;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------------------------
Gather Motion 48:1 (slice2; segments: 48) (cost=136576.82..136799.05 rows=9877 width=96)
Rows out: 10001 rows at destination with 212 ms to end, start offset by 1.917 ms.
-> HashAggregate (cost=136576.82..136799.05 rows=206 width=96)
Group By: tbl_heap_row.c398
Rows out: Avg 208.4 rows x 48 workers. Max 223 rows (seg17) with 0.001 ms to first row, 70 ms to end, start offset by 14 ms.
-> Redistribute Motion 48:48 (slice1; segments: 48) (cost=136132.35..136329.89 rows=206 width=96)
Hash Key: tbl_heap_row.c398
Rows out: Avg 8762.2 rows x 48 workers at destination. Max 9422 rows (seg46) with 93 ms to end, start offset by 48 ms.
-> HashAggregate (cost=136132.35..136132.35 rows=206 width=96)
Group By: tbl_heap_row.c398
Rows out: Avg 8762.2 rows x 48 workers. Max 8835 rows (seg2) with 0.003 ms to first row, 12 ms to end, start offset by 49 ms.
-> Seq Scan on tbl_heap_row (cost=0.00..121134.54 rows=20831 width=16)
Rows out: Avg 20833.3 rows x 48 workers. Max 20854 rows (seg42) with 40 ms to first row, 133 ms to end, start offset by 51 ms.
Slice statistics:
(slice0) Executor memory: 377K bytes.
(slice1) Executor memory: 1156K bytes avg x 48 workers, 1156K bytes max (seg0).
(slice2) Executor memory: 414K bytes avg x 48 workers, 414K bytes max (seg1).
Statement statistics:
Memory used: 128000K bytes
Settings: optimizer=off
Optimizer status: legacy query optimizer
Total runtime: 214.024 ms
(22 rows)
11、行存AO表,前麵幾個字段的統計
postgres=# explain analyze select c2,count(*),sum(c3),avg(c3),min(c3),max(c3) from tbl_ao_row group by c2;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------
Gather Motion 48:1 (slice2; segments: 48) (cost=124755.04..124755.07 rows=1 width=96)
Rows out: 1 rows at destination with 149 ms to end, start offset by 1.890 ms.
-> HashAggregate (cost=124755.04..124755.07 rows=1 width=96)
Group By: tbl_ao_row.c2
Rows out: 1 rows (seg42) with 0.004 ms to first row, 55 ms to end, start offset by 64 ms.
-> Redistribute Motion 48:48 (slice1; segments: 48) (cost=124755.00..124755.02 rows=1 width=96)
Hash Key: tbl_ao_row.c2
Rows out: 48 rows at destination (seg42) with 32 ms to end, start offset by 64 ms.
-> HashAggregate (cost=124755.00..124755.00 rows=1 width=96)
Group By: tbl_ao_row.c2
Rows out: Avg 1.0 rows x 48 workers. Max 1 rows (seg0) with 0.001 ms to first row, 46 ms to end, start offset by 59 ms.
-> Append-only Scan on tbl_ao_row (cost=0.00..109755.00 rows=20834 width=16)
Rows out: Avg 20833.3 rows x 48 workers. Max 20854 rows (seg42) with 24 ms to end, start offset by 59 ms.
Slice statistics:
(slice0) Executor memory: 345K bytes.
(slice1) Executor memory: 770K bytes avg x 48 workers, 770K bytes max (seg0).
(slice2) Executor memory: 359K bytes avg x 48 workers, 374K bytes max (seg42).
Statement statistics:
Memory used: 128000K bytes
Settings: optimizer=off
Optimizer status: legacy query optimizer
Total runtime: 152.386 ms
(22 rows)
12、行存AO表,末尾幾個字段的統計
postgres=# explain analyze select c398,count(*),sum(c399),avg(c399),min(c399),max(c399) from tbl_ao_row group by c398;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------------
Gather Motion 48:1 (slice2; segments: 48) (cost=125186.01..125401.52 rows=9578 width=96)
Rows out: 10001 rows at destination with 183 ms to end, start offset by 1.846 ms.
-> HashAggregate (cost=125186.01..125401.52 rows=200 width=96)
Group By: tbl_ao_row.c398
Rows out: Avg 208.4 rows x 48 workers. Max 223 rows (seg17) with 0.003 ms to first row, 97 ms to end, start offset by 22 ms.
-> Redistribute Motion 48:48 (slice1; segments: 48) (cost=124755.00..124946.56 rows=200 width=96)
Hash Key: tbl_ao_row.c398
Rows out: Avg 8762.2 rows x 48 workers at destination. Max 9422 rows (seg46) with 32 ms to end, start offset by 68 ms.
-> HashAggregate (cost=124755.00..124755.00 rows=200 width=96)
Group By: tbl_ao_row.c398
Rows out: Avg 8762.2 rows x 48 workers. Max 8835 rows (seg2) with 0.013 ms to first row, 48 ms to end, start offset by 22 ms.
-> Append-only Scan on tbl_ao_row (cost=0.00..109755.00 rows=20834 width=16)
Rows out: Avg 20833.3 rows x 48 workers. Max 20854 rows (seg42) with 22 ms to end, start offset by 71 ms.
Slice statistics:
(slice0) Executor memory: 377K bytes.
(slice1) Executor memory: 1144K bytes avg x 48 workers, 1144K bytes max (seg0).
(slice2) Executor memory: 414K bytes avg x 48 workers, 414K bytes max (seg0).
Statement statistics:
Memory used: 128000K bytes
Settings: optimizer=off
Optimizer status: legacy query optimizer
Total runtime: 184.723 ms
(22 rows)
13、列存AO表,前麵幾個字段的統計
postgres=# explain analyze select c2,count(*),sum(c3),avg(c3),min(c3),max(c3) from tbl_ao_col group by c2;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------------
Gather Motion 48:1 (slice2; segments: 48) (cost=122928.04..122928.07 rows=1 width=96)
Rows out: 1 rows at destination with 104 ms to end, start offset by 1.878 ms.
-> HashAggregate (cost=122928.04..122928.07 rows=1 width=96)
Group By: tbl_ao_col.c2
Rows out: 1 rows (seg42) with 0.003 ms to first row, 18 ms to end, start offset by 55 ms.
-> Redistribute Motion 48:48 (slice1; segments: 48) (cost=122928.00..122928.02 rows=1 width=96)
Hash Key: tbl_ao_col.c2
Rows out: 48 rows at destination (seg42) with 30 ms to end, start offset by 55 ms.
-> HashAggregate (cost=122928.00..122928.00 rows=1 width=96)
Group By: tbl_ao_col.c2
Rows out: Avg 1.0 rows x 48 workers. Max 1 rows (seg0) with 0.007 ms to first row, 3.991 ms to end, start offset by 54 ms.
-> Append-only Columnar Scan on tbl_ao_col (cost=0.00..107928.00 rows=20834 width=16)
Rows out: 0 rows (seg0) with 40 ms to end, start offset by 56 ms.
Slice statistics:
(slice0) Executor memory: 345K bytes.
(slice1) Executor memory: 903K bytes avg x 48 workers, 903K bytes max (seg0).
(slice2) Executor memory: 359K bytes avg x 48 workers, 374K bytes max (seg42).
Statement statistics:
Memory used: 128000K bytes
Settings: optimizer=off
Optimizer status: legacy query optimizer
Total runtime: 106.859 ms
(22 rows)
14、列存AO表,末尾幾個字段的統計
postgres=# explain analyze select c398,count(*),sum(c399),avg(c399),min(c399),max(c399) from tbl_ao_col group by c398;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------------------
Gather Motion 48:1 (slice2; segments: 48) (cost=123364.18..123582.28 rows=9693 width=96)
Rows out: 10001 rows at destination with 120 ms to end, start offset by 1.921 ms.
-> HashAggregate (cost=123364.18..123582.28 rows=202 width=96)
Group By: tbl_ao_col.c398
Rows out: Avg 208.4 rows x 48 workers. Max 223 rows (seg17) with 0.001 ms to first row, 54 ms to end, start offset by 35 ms.
-> Redistribute Motion 48:48 (slice1; segments: 48) (cost=122928.00..123121.86 rows=202 width=96)
Hash Key: tbl_ao_col.c398
Rows out: Avg 8762.2 rows x 48 workers at destination. Max 9422 rows (seg46) with 31 ms to end, start offset by 63 ms.
-> HashAggregate (cost=122928.00..122928.00 rows=202 width=96)
Group By: tbl_ao_col.c398
Rows out: Avg 8762.2 rows x 48 workers. Max 8835 rows (seg2) with 0.004 ms to first row, 8.004 ms to end, start offset by 82 ms.
-> Append-only Columnar Scan on tbl_ao_col (cost=0.00..107928.00 rows=20834 width=16)
Rows out: 0 rows (seg0) with 28 ms to end, start offset by 64 ms.
Slice statistics:
(slice0) Executor memory: 377K bytes.
(slice1) Executor memory: 1272K bytes avg x 48 workers, 1272K bytes max (seg0).
(slice2) Executor memory: 414K bytes avg x 48 workers, 414K bytes max (seg0).
Statement statistics:
Memory used: 128000K bytes
Settings: optimizer=off
Optimizer status: legacy query optimizer
Total runtime: 122.173 ms
(22 rows)
小結,對於非分布鍵的分組聚合請求,Greenplum采用了3階段聚合:
第一階段,在SEGMENT本地聚合。(需要掃描所有數據,這裏不同存儲,前麵的列和後麵的列的差別就體現出來了,行存儲的deform開銷,在對後麵的列進行統計時性能影響很明顯。)
第二階段,根據分組字段,重分布數據。(需要重分布需要用到的字段。)
第三階段,在SEGMENT本地聚合。(需要對重分布後的數據進行聚合。)
第四階段,返回結果。
參考
《PostgreSQL 向量化執行插件(瓦片式實現) 10x提速OLAP》
最後更新:2017-08-20 17:06:22