HDU 4311 树状数组+二分
题意:给出10W个点,找出一个点使得每点按网格走到它的步数和最小,求最小步数和。每步这么走Eg: (x,y) can be reached from (x-1,y), (x+1,y), (x, y-1), (x, y+1).。
a点到达b点的步数为abs(b.x-a.x)+abs(b.y-a.y) 那么a点到所有点的步数和为abs(pi.x-a.x)+abs(pi.y-ay)所以按照从小到大的顺序吧x,y的值排序,二分查找a.x a.y在数组中的位置,就是给上面那个求和在打开就变成abs(numx*ax-sumpi.x(1~numx))+abs(pi.x(numx+1~n)-(n-numx)*a.x)就是x的和 同理求出y的和就可以了意思就是这样
ans=(x1+x2+x3+...+xn)-n*xi+(y1+y2+...+yn)-n*yi; 不过需要考虑大小关系
(括号里面的sum部分可以用树状数组、线段树来维护)
#include <iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; #define maxn 100005 long long treex[maxn<<1],treey[maxn<<1],datax[maxn],datay[maxn],sumx,sumy; struct cor { long long x,y; } data[maxn]; int n; inline int Lowbit(int x) { return x&(-x); } inline void Update(int pos,long long val,long long *tree) { while(pos<=maxn) tree[pos]+=val,pos+=Lowbit(pos); } inline long long Query(int x,long long *tree) { long long sum=0; while(x>0) sum+=tree[x],x-=Lowbit(x); return sum; } inline int find(long long val,long long *data) { int l=0,r=n-1,mid; while(l<=r) { mid=(l+r)>>1; if(val==data[mid]) return mid+1; else if(val<data[mid]) r=mid-1; else l=mid+1; } } long long ab(long long a) { return a<0?-a:a; } long long getans(cor a) { long long sum,nowx,nowy; int numx,numy; numx=find(a.x,datax),numy=find(a.y,datay); nowx=Query(numx,treex),nowy=Query(numy,treey); sum=ab((long long)numx*a.x-nowx)+ab(sumx-nowx-(long long)(n-numx)*a.x)+ab((long long)numy*a.y-nowy)+ab(sumy-nowy-(long long)(n-numy)*a.y); return sum; } int main() { int t; long long ans; scanf("%d",&t); while(t--) { sumx=sumy=0; memset(treex,0,sizeof(treex)); memset(treey,0,sizeof(treey)); scanf("%d",&n); for(int i=0; i<n; i++) scanf("%I64d%I64d",&data[i].x,&data[i].y), datax[i]=data[i].x,datay[i]=data[i].y, sumx+=data[i].x,sumy+=data[i].y; sort(datax,datax+n); sort(datay,datay+n); for(int i=0; i<n; i++) Update(i+1,datax[i],treex),Update(i+1,datay[i],treey); ans=1e17; for(int i=0; i<n; i++) ans=min(ans,getans(data[i])); printf("%I64d\n",ans); } return 0; }
最后更新:2017-04-03 18:52:06