從Java視角理解係統結構(二)CPU緩存
從Java視角理解係統結構連載, 關注我的微博(鏈接)了解最新動態
眾所周知, CPU是計算機的大腦, 它負責執行程序的指令; 內存負責存數據, 包括程序自身數據. 同樣大家都知道, 內存比CPU慢很多. 其實在30年前, CPU的頻率和內存總線的頻率在同一個級別, 訪問內存隻比訪問CPU寄存器慢一點兒. 由於內存的發展都到技術及成本的限製, 現在獲取內存中的一條數據大概需要200多個CPU周期(CPU cycles), 而CPU寄存器一般情況下1個CPU周期就夠了.
CPU緩存
網頁瀏覽器為了加快速度,會在本機存緩存以前瀏覽過的數據; 傳統數據庫或NoSQL數據庫為了加速查詢, 常在內存設置一個緩存,
減少對磁盤(慢)的IO. 同樣內存與CPU的速度相差太遠, 於是CPU設計者們就給CPU加上了緩存(CPU Cache).
如果你需要對同一批數據操作很多次, 那麼把數據放至離CPU更近的緩存, 會給程序帶來很大的速度提升. 例如, 做一個循環計數,
把計數變量放到緩存裏,就不用每次循環都往內存存取數據了. 下麵是CPU Cache的簡單示意圖.
隨著多核的發展, CPU Cache分成了三個級別: L1, L2, L3. 級別越小越接近CPU, 所以速度也更快, 同時也代表著容量越小. L1是最接近CPU的, 它容量最小, 例如32K, 速度最快,每個核上都有一個L1 Cache(準確地說每個核上有兩個L1 Cache, 一個存數據 L1d Cache, 一個存指令 L1i Cache). L2 Cache 更大一些,例如256K, 速度要慢一些, 一般情況下每個核上都有一個獨立的L2 Cache; L3 Cache是三級緩存中最大的一級,例如12MB,同時也是最慢的一級, 在同一個CPU插槽之間的核共享一個L3 Cache.
從CPU到 | 大約需要的CPU周期 | 大約需要的時間(單位ns) |
寄存器 | 1 cycle | |
L1 Cache | ~3-4 cycles | ~0.5-1 ns |
L2 Cache | ~10-20 cycles | ~3-7 ns |
L3 Cache | ~40-45 cycles | ~15 ns |
跨槽傳輸 | ~20 ns | |
內存 | ~120-240 cycles | ~60-120ns |
感興趣的同學可以在Linux下麵用cat /proc/cpuinfo, 或Ubuntu下lscpu看看自己機器的緩存情況, 更細的可以通過以下命令看看:
$ cat /sys/devices/system/cpu/cpu0/cache/index0/size 32K $ cat /sys/devices/system/cpu/cpu0/cache/index0/type Data $ cat /sys/devices/system/cpu/cpu0/cache/index0/level 1 $ cat /sys/devices/system/cpu/cpu3/cache/index3/level 3
就像數據庫cache一樣, 獲取數據時首先會在最快的cache中找數據, 如果沒有命中(Cache miss) 則往下一級找, 直到三層Cache都找不到,那隻要向內存要數據了. 一次次地未命中,代表取數據消耗的時間越長.
緩存行(Cache line)
為了高效地存取緩存, 不是簡單隨意地將單條數據寫入緩存的. 緩存是由緩存行組成的, 典型的一行是64字節. 讀者可以通過下麵的shell命令,查看cherency_line_size就知道知道機器的緩存行是多大.
$ cat /sys/devices/system/cpu/cpu0/cache/index0/coherency_line_size 64
CPU存取緩存都是按行為最小單位操作的. 在這兒我將不提及緩存的associativity問題, 將問題簡化一些. 一個Java long型占8字節, 所以從一條緩存行上你可以獲取到8個long型變量. 所以如果你訪問一個long型數組, 當有一個long被加載到cache中, 你將無消耗地加載了另外7個. 所以你可以非常快地遍曆數組.
實驗及分析
我們在Java編程時, 如果不注意CPU Cache, 那麼將導致程序效率低下. 例如以下程序, 有一個二維long型數組, 在我的32位筆記本上運行時的內存分布如圖:
32位機器中的java的數組對象頭共占16字節(詳情見 鏈接), 加上62個long型一行long數據一共占512字節. 所以這個二維數據是順序排列的.
public class L1CacheMiss { private static final int RUNS = 10; private static final int DIMENSION_1 = 1024 * 1024; private static final int DIMENSION_2 = 62; private static long[][] longs; public static void main(String[] args) throws Exception { Thread.sleep(10000); longs = new long[DIMENSION_1][]; for (int i = 0; i < DIMENSION_1; i++) { longs[i] = new long[DIMENSION_2]; for (int j = 0; j < DIMENSION_2; j++) { longs[i][j] = 0L; } } System.out.println("starting...."); final long start = System.nanoTime(); long sum = 0L; for (int r = 0; r < RUNS; r++) { // for (int j = 0; j < DIMENSION_2; j++) { // for (int i = 0; i < DIMENSION_1; i++) { // sum += longs[i][j]; // } // } for (int i = 0; i < DIMENSION_1; i++) { for (int j = 0; j < DIMENSION_2; j++) { sum += longs[i][j]; } } } System.out.println("duration = " + (System.nanoTime() - start)); } }
編譯後運行,結果如下
$ java L1CacheMiss starting.... duration = 1460583903
然後我們將22-26行的注釋取消, 將28-32行注釋, 編譯後再次運行,結果是不是比我們預想得還糟?
$ java L1CacheMiss starting.... duration = 22332686898
前麵隻花了1.4秒的程序, 隻做一行的對調要運行22秒. 從上節我們可以知道在加載longs[i][j]時,
longs[i][j+1]很可能也會被加載至cache中, 所以立即訪問longs[i][j+1]將會命中L1 Cache,
而如果你訪問longs[i+1][j]情況就不一樣了, 這時候很可能會產生 cache miss導致效率低下.
下麵我們用perf來驗證一下,先將快的程序跑一下.
$ perf stat -e L1-dcache-load-misses java L1CacheMiss starting.... duration = 1463011588 Performance counter stats for 'java L1CacheMiss': 164,625,965 L1-dcache-load-misses 13.273572184 seconds time elapsed
一共164,625,965次L1 cache miss, 再看看慢的程序
$ perf stat -e L1-dcache-load-misses java L1CacheMiss starting.... duration = 21095062165 Performance counter stats for 'java L1CacheMiss': 1,421,402,322 L1-dcache-load-misses 32.894789436 seconds time elapsed
這回產生了1,421,402,322次 L1-dcache-load-misses, 所以慢多了.
以上我隻是示例了在L1 Cache滿了之後才會發生的cache miss. 其實cache miss的原因有下麵三種:
1. 第一次訪問數據, 在cache中根本不存在這條數據, 所以cache miss, 可以通過prefetch解決.
2. cache衝突, 需要通過補齊來解決.
3. 就是我示例的這種, cache滿, 一般情況下我們需要減少操作的數據大小, 盡量按數據的物理順序訪問數據.
具體的信息可以參考這篇論文.
文章轉自 並發編程網-ifeve.com
最後更新:2017-05-22 18:01:45