閱讀995 返回首頁    go 阿裏雲 go 技術社區[雲棲]


CUDA從入門到精通(二):第一個CUDA程序

 

書接上回,我們既然直接運行例程成功了,接下來就是了解如何實現例程中的每個環節。當然,我們先從簡單的做起,一般編程語言都會找個helloworld例子,而我們的顯卡是不會說話的,隻能做一些簡單的加減乘除運算。所以,CUDA程序的helloworld,我想應該最合適不過的就是向量加了。

打開VS2008,選擇File->New->Project,彈出下麵對話框,設置如下:

之後點OK,直接進入工程界麵。

工程中,我們看到隻有一個.cu文件,內容如下:

#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include <stdio.h>

cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size);

__global__ void addKernel(int *c, const int *a, const int *b)
{
    int i = threadIdx.x;
    c[i] = a[i] + b[i];
}

int main()
{
    const int arraySize = 5;
    const int a[arraySize] = { 1, 2, 3, 4, 5 };
    const int b[arraySize] = { 10, 20, 30, 40, 50 };
    int c[arraySize] = { 0 };

    // Add vectors in parallel.
    cudaError_t cudaStatus = addWithCuda(c, a, b, arraySize);
    if (cudaStatus != cudaSuccess) {
        fprintf(stderr, "addWithCuda failed!");
        return 1;
    }

    printf("{1,2,3,4,5} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}\n",
        c[0], c[1], c[2], c[3], c[4]);

    // cudaThreadExit must be called before exiting in order for profiling and
    // tracing tools such as Nsight and Visual Profiler to show complete traces.
    cudaStatus = cudaThreadExit();
    if (cudaStatus != cudaSuccess) {
        fprintf(stderr, "cudaThreadExit failed!");
        return 1;
    }

    return 0;
}

// Helper function for using CUDA to add vectors in parallel.
cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size)
{
    int *dev_a = 0;
    int *dev_b = 0;
    int *dev_c = 0;
    cudaError_t cudaStatus;

    // Choose which GPU to run on, change this on a multi-GPU system.
    cudaStatus = cudaSetDevice(0);
    if (cudaStatus != cudaSuccess) {
        fprintf(stderr, "cudaSetDevice failed!  Do you have a CUDA-capable GPU installed?");
        goto Error;
    }

    // Allocate GPU buffers for three vectors (two input, one output)    .
    cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
    if (cudaStatus != cudaSuccess) {
        fprintf(stderr, "cudaMalloc failed!");
        goto Error;
    }

    cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
    if (cudaStatus != cudaSuccess) {
        fprintf(stderr, "cudaMalloc failed!");
        goto Error;
    }

    cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
    if (cudaStatus != cudaSuccess) {
        fprintf(stderr, "cudaMalloc failed!");
        goto Error;
    }

    // Copy input vectors from host memory to GPU buffers.
    cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
    if (cudaStatus != cudaSuccess) {
        fprintf(stderr, "cudaMemcpy failed!");
        goto Error;
    }

    cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
    if (cudaStatus != cudaSuccess) {
        fprintf(stderr, "cudaMemcpy failed!");
        goto Error;
    }

    // Launch a kernel on the GPU with one thread for each element.
    addKernel<<<1, size>>>(dev_c, dev_a, dev_b);

    // cudaThreadSynchronize waits for the kernel to finish, and returns
    // any errors encountered during the launch.
    cudaStatus = cudaThreadSynchronize();
    if (cudaStatus != cudaSuccess) {
        fprintf(stderr, "cudaThreadSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
        goto Error;
    }

    // Copy output vector from GPU buffer to host memory.
    cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);
    if (cudaStatus != cudaSuccess) {
        fprintf(stderr, "cudaMemcpy failed!");
        goto Error;
    }

Error:
    cudaFree(dev_c);
    cudaFree(dev_a);
    cudaFree(dev_b);
    
    return cudaStatus;
}


 可以看出,CUDA程序和C程序並無區別,隻是多了一些以"cuda"開頭的一些庫函數和一個特殊聲明的函數:

__global__ void addKernel(int *c, const int *a, const int *b)
{
    int i = threadIdx.x;
    c[i] = a[i] + b[i];
}


這個函數就是在GPU上運行的函數,稱之為核函數,英文名Kernel Function,注意要和操作係統內核函數區分開來。

 

我們直接按F7編譯,可以得到如下輸出:

1>------ Build started: Project: cuda_helloworld, Configuration: Debug Win32 ------
1>Compiling with CUDA Build Rule...
1>"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.0\\bin\nvcc.exe"  -G   -gencode=arch=compute_10,code=\"sm_10,compute_10\" -gencode=arch=compute_20,code=\"sm_20,compute_20\"  --machine 32 -ccbin "C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin"    -Xcompiler "/EHsc /W3 /nologo /O2 /Zi   /MT  "  -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.0\\include" -maxrregcount=0   --compile -o "Debug/kernel.cu.obj" kernel.cu  
1>tmpxft_000000ec_00000000-8_kernel.compute_10.cudafe1.gpu
1>tmpxft_000000ec_00000000-14_kernel.compute_10.cudafe2.gpu
1>tmpxft_000000ec_00000000-5_kernel.compute_20.cudafe1.gpu
1>tmpxft_000000ec_00000000-17_kernel.compute_20.cudafe2.gpu
1>kernel.cu
1>kernel.cu
1>tmpxft_000000ec_00000000-8_kernel.compute_10.cudafe1.cpp
1>tmpxft_000000ec_00000000-24_kernel.compute_10.ii
1>Linking...
1>Embedding manifest...
1>Performing Post-Build Event...
1>copy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.0\\bin\cudart*.dll" "C:\Users\DongXiaoman\Documents\Visual Studio 2008\Projects\cuda_helloworld\Debug"
1>C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.0\\bin\cudart32_50_35.dll
1>C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.0\\bin\cudart64_50_35.dll
1>已複製         2 個文件。
1>Build log was saved at "file://c:\Users\DongXiaoman\Documents\Visual Studio 2008\Projects\cuda_helloworld\cuda_helloworld\Debug\BuildLog.htm"
1>cuda_helloworld - 0 error(s), 105 warning(s)
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

可見,編譯.cu文件需要利用nvcc工具。該工具的詳細使用見後麵博客。

 

直接運行,可以得到結果圖如下:

 

如果顯示正確,那麼我們的第一個程序宣告成功!


 

最後更新:2017-04-03 16:48:43

  上一篇:go 哪種編程語言的影響力最大?
  下一篇:go 用藥提醒程序設計(原創)(定時、定時3次、按用戶定時,前半小時2分鍾提醒一次,後一個半小時10分鍾提醒一次)