阅读702 返回首页    go 阿里云 go 技术社区[云栖]


Top100论文导读:深入理解卷积神经网络CNN(Part Ⅰ)

https://yq.aliyun.com/cloud

Adrian Colyermorning paperAccel Partners

https://www.linkedin.com/in/adriancolyer/

Twitterhttps://twitter.com/adriancolyer


 Top100内容见下篇博客首先是:

ImageNet classification with deep convolutional neural networks
Maxout networksGoodfellow
Network in network

OverFeat

Ujjwal KarnAn intuitive explanation of convolutional neural networks


ImageNet
Hinton成功ImageNetGPU
CNN
CNN
Krizhevsky8——531000softmax1000GPUGPU 

3665420f3cb96a6827640fa208955fb51bb8450f


1. tanh使用ReLUtanh
2. GPUGPUtop-1top-5%1.2%
3.
4. z x z之间top-1top-5%0.3% 

3a03c6d5ae274fec26c12ce6bb9db3ccd888ebdf

Dropout

ILSVRC2010top-1top-537.5%17.0%ILSVRC2012top-515.3%26.2%

Maxout

MaxoutDropoutDropoutMaxoutCNNMaxoutMaxout
kDropout
Maxout 

b6e874fa7a4837997c73eaac1fceb2226f286764

MaxoutDropoutMNISTCIFAR10CIFAR100
DropoutMaxoutDropoutDropoutMaxout
NIN

CNNGLMMaxout
NINGLM(MLP) 

d0e8d52896363f5910230d45286c266661eb871e

mlpconvmlpconv 

1e912f66af86fcce35b1612636d1ca2556de73f6


CNNNINmlpconvsoftmax

CIFAR101% 

898624c392b89c711c694f9dfff37ea76fef9ca1

CIFAR1001%SVHN 

OverFeat
OverFeatCNNILSVRC 2013

324dc30abf417d87949a92f0a143a90c854f7898

 

bf8748ae6155dab07d6d2f93eba1172931f2665e

ConvNet
OverFeatConvNet


Krizhevsky265 

b67a1c3e97cf086afe3003e7d1b330c08925be36

5 

05038a10d480128fc0ab9ed79846a151f2d0b341

——156



 

99ee1441b4a512055e44abf925e24a903fea4301



 

pdf

@

Convolutional neural networks, Part 1Adrian Colyer

 

 

最后更新:2017-05-01 08:01:17

  上一篇:go spark源码分析之Executor启动与任务提交篇
  下一篇:go spark源码分析Master与Worker启动流程篇