阅读339 返回首页    go 阿里云 go 技术社区[云栖]


谷歌TPU优化新进展:数据吞吐提升15倍、每瓦特性能猛增

不知读者们是否还记得 Google 公司的“张量处理器”(Tensor Processing Unit)?作为一款由该公司设计的定制版“特定用途集成电路”(ASIC),其旨在为机器学习的推力阶段提供加速。Google 早期表示,与传统 CPU 或 GPU 相比,该 TPU 可将此类任务的“每瓦特性能”提升十个数量级。不过自 2015 年推出以来,该公司现又在一篇研究分析报告中给出了最新的性能数据。

0 tpu-2.png

谦虚点说,Google 将每瓦特性能提升了 10x 。但与传统解决方案相比(根据场景的不同),其数据提升在 30~80x 之间。

原始速度(RAW Speed)方面,Google 亦表示其 TPU(较标准硬件)提速幅度在 15~30x 左右。

20170406095907405.jpg

运行在 TPU 上的软件,是基于 Google TensorFlow 的机器学习框架,且部分性能提升得益于这方面的优化。研究报告作者表示,未来还有进一步优化的空间。

20170406095909475.png

其实早在 6 年前,Google 就已经预见到了 TPU 之类的芯片需求。该公司在许多项目中运用了其机器学习算法,包括图像搜索、Photos、Cloud Vision、以及谷歌翻译。

20170406095911299.png

机器学习的本质是密集计算,比如 Google 工程师举出的这个例子 —— 如果人们每天用三分钟的语音搜索,但运行没有 TPU 加持的语音识别人物的话,该公司将需要建造两倍多的数据中心。





最后更新:2017-08-13 22:32:17

  上一篇:go  Facebook发布新工具:防止用户被前任用艳照报复
  下一篇:go  云服务器 ECS快速入门:Windows 格式化数据盘