阅读621 返回首页    go 阿里云 go 技术社区[云栖]


详解Twitter开源分布式自增ID算法snowflake,附演算验证过程

1.snowflake简介

    互联网快速发展的今天,分布式应用系统已经见怪不怪,在分布式系统中,我们需要各种各样的ID,既然是ID那么必然是要保证全局唯一,除此之外,不同当业务还需要不同的特性,比如像并发巨大的业务要求ID生成效率高,吞吐大;比如某些银行类业务,需要按每日日期制定交易流水号;又比如我们希望用户的ID是随机的,无序的,纯数字的,且位数长度是小于10位的。等等,不同的业务场景需要的ID特性各不一样,于是,衍生了各种ID生成器,但大多数利用数据库控制ID的生成,性能受数据库并发能力限制,那么有没有一款不需要依赖任何中间件(如数据库,分布式缓存服务等)的ID生成器呢?本着取之于开源,用之于开源的原则,今天,特此介绍Twitter开源的一款分布式自增ID算法snowflake,并附上算法原理推导和演算过程!

snowflake算法是一款本地生成的(ID生成过程不依赖任何中间件,无网络通信),保证ID全局唯一,并且ID总体有序递增,性能每秒生成300w+。

2.snowflake算法原理

snowflake生产的ID二进制结构表示如下(每部分用-分开):
0 - 00000000 00000000 00000000 00000000 00000000 0 - 00000 - 00000 - 00000000 0000

第一位未使用,接下来的41位为毫秒级时间(41位的长度可以使用69年,从1970-01-01 08:00:00),然后是5位datacenterId(最大支持2^5=32个,二进制表示从00000-11111,也即是十进制0-31),和5位workerId(最大支持2^5=32个,原理同datacenterId),所以datacenterId*workerId最多支持部署1024个节点,最后12位是毫秒内的计数(12位的计数顺序号支持每个节点每毫秒产生2^12=4096个ID序号).

所有位数加起来共64位,恰好是一个Long型(转换为字符串长度为18).

单台机器实例,通过时间戳保证前41位是唯一的,分布式系统多台机器实例下,通过对每个机器实例分配不同的datacenterId和workerId避免中间的10位碰撞。最后12位每毫秒从0递增生产ID,再提一次:每毫秒最多生成4096个ID,每秒可达4096000个。理论上,只要CPU计算能力足够,单机每秒可生产400多万个,实测300w+,效率之高由此可见。

(该节改编自:https://www.cnblogs.com/relucent/p/4955340.html)

3.snowflake算法源码(java版)
[java] view plain copy
@ToString
@Slf4j
public class SnowflakeIdFactory {

private final long twepoch = 1288834974657L;  
private final long workerIdBits = 5L;  
private final long datacenterIdBits = 5L;  
private final long maxWorkerId = -1L ^ (-1L << workerIdBits);  
private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);  
private final long sequenceBits = 12L;  
private final long workerIdShift = sequenceBits;  
private final long datacenterIdShift = sequenceBits + workerIdBits;  
private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;  
private final long sequenceMask = -1L ^ (-1L << sequenceBits);  

private long workerId;  
private long datacenterId;  
private long sequence = 0L;  
private long lastTimestamp = -1L;  



public SnowflakeIdFactory(long workerId, long datacenterId) {  
    if (workerId > maxWorkerId || workerId < 0) {  
        throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));  
    }  
    if (datacenterId > maxDatacenterId || datacenterId < 0) {  
        throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));  
    }  
    this.workerId = workerId;  
    this.datacenterId = datacenterId;  
}  

public synchronized long nextId() {  
    long timestamp = timeGen();  
    if (timestamp < lastTimestamp) {  
        //服务器时钟被调整了,ID生成器停止服务.  
        throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));  
    }  
    if (lastTimestamp == timestamp) {  
        sequence = (sequence + 1) & sequenceMask;  
        if (sequence == 0) {  
            timestamp = tilNextMillis(lastTimestamp);  
        }  
    } else {  
        sequence = 0L;  
    }  

    lastTimestamp = timestamp;  
    return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence;  
}  

protected long tilNextMillis(long lastTimestamp) {  
    long timestamp = timeGen();  
    while (timestamp <= lastTimestamp) {  
        timestamp = timeGen();  
    }  
    return timestamp;  
}  

protected long timeGen() {  
    return System.currentTimeMillis();  
}  

public static void testProductIdByMoreThread(int dataCenterId, int workerId, int n) throws InterruptedException {  
    List<Thread> tlist = new ArrayList<>();  
    Set<Long> setAll = new HashSet<>();  
    CountDownLatch cdLatch = new CountDownLatch(10);  
    long start = System.currentTimeMillis();  
    int threadNo = dataCenterId;  
    Map<String,SnowflakeIdFactory> idFactories = new HashMap<>();  
    for(int i=0;i<10;i++){  
        //用线程名称做map key.  
        idFactories.put("snowflake"+i,new SnowflakeIdFactory(workerId, threadNo++));  
    }  
    for(int i=0;i<10;i++){  
        Thread temp =new Thread(new Runnable() {  
            @Override  
            public void run() {  
                Set<Long> setId = new HashSet<>();  
                SnowflakeIdFactory idWorker = idFactories.get(Thread.currentThread().getName());  
                for(int j=0;j<n;j++){  
                    setId.add(idWorker.nextId());  
                }  
                synchronized (setAll){  
                    setAll.addAll(setId);  
                    log.info("{}生产了{}个id,并成功加入到setAll中.",Thread.currentThread().getName(),n);  
                }  
                cdLatch.countDown();  
            }  
        },"snowflake"+i);  
        tlist.add(temp);  
    }  
    for(int j=0;j<10;j++){  
        tlist.get(j).start();  
    }  
    cdLatch.await();  

    long end1 = System.currentTimeMillis() - start;  

    log.info("共耗时:{}毫秒,预期应该生产{}个id, 实际合并总计生成ID个数:{}",end1,10*n,setAll.size());  

}  

public static void testProductId(int dataCenterId, int workerId, int n){  
    SnowflakeIdFactory idWorker = new SnowflakeIdFactory(workerId, dataCenterId);  
    SnowflakeIdFactory idWorker2 = new SnowflakeIdFactory(workerId+1, dataCenterId);  
    Set<Long> setOne = new HashSet<>();  
    Set<Long> setTow = new HashSet<>();  
    long start = System.currentTimeMillis();  
    for (int i = 0; i < n; i++) {  
        setOne.add(idWorker.nextId());//加入set  
    }  
    long end1 = System.currentTimeMillis() - start;  
    log.info("第一批ID预计生成{}个,实际生成{}个<<<<*>>>>共耗时:{}",n,setOne.size(),end1);  

    for (int i = 0; i < n; i++) {  
        setTow.add(idWorker2.nextId());//加入set  
    }  
    long end2 = System.currentTimeMillis() - start;  
    log.info("第二批ID预计生成{}个,实际生成{}个<<<<*>>>>共耗时:{}",n,setTow.size(),end2);  

    setOne.addAll(setTow);  
    log.info("合并总计生成ID个数:{}",setOne.size());  

}  

public static void testPerSecondProductIdNums(){  
    SnowflakeIdFactory idWorker = new SnowflakeIdFactory(1, 2);  
    long start = System.currentTimeMillis();  
    int count = 0;  
    for (int i = 0; System.currentTimeMillis()-start<1000; i++,count=i) {  
        /**  测试方法一: 此用法纯粹的生产ID,每秒生产ID个数为300w+ */  
        idWorker.nextId();  
        /**  测试方法二: 在log中打印,同时获取ID,此用法生产ID的能力受限于log.error()的吞吐能力. 
         * 每秒徘徊在10万左右. */  
        //log.error("{}",idWorker.nextId());  
    }  
    long end = System.currentTimeMillis()-start;  
    System.out.println(end);  
    System.out.println(count);  
}  

public static void main(String[] args) {  
    /** case1: 测试每秒生产id个数? 
     *   结论: 每秒生产id个数300w+ */  
    //testPerSecondProductIdNums();  

    /** case2: 单线程-测试多个生产者同时生产N个id,验证id是否有重复? 
     *   结论: 验证通过,没有重复. */  
    //testProductId(1,2,10000);//验证通过!  
    //testProductId(1,2,20000);//验证通过!  

    /** case3: 多线程-测试多个生产者同时生产N个id, 全部id在全局范围内是否会重复? 
     *   结论: 验证通过,没有重复. */  
    try {  
        testProductIdByMoreThread(1,2,100000);//单机测试此场景,性能损失至少折半!  
    } catch (InterruptedException e) {  
        e.printStackTrace();  
    }  

}  

}

测试用例:
/** case1: 测试每秒生产id个数?

  • 结论: 每秒生产id个数300w+ */ //testPerSecondProductIdNums();

/** case2: 单线程-测试多个生产者同时生产N个id,验证id是否有重复?

  • 结论: 验证通过,没有重复. */ //testProductId(1,2,10000);//验证通过! //testProductId(1,2,20000);//验证通过!

/** case3: 多线程-测试多个生产者同时生产N个id, 全部id在全局范围内是否会重复?

  • 结论: 验证通过,没有重复. */ try { testProductIdByMoreThread(1,2,100000);//单机测试此场景,性能损失至少折半! } catch (InterruptedException e) { e.printStackTrace(); }

4.snowflake算法推导和演算过程
说明:
演算使用的对象实例:SnowflakeIdFactory idWorker = new SnowflakeIdFactory(1, 2);
运行时数据workerId=1,datacenterId=2,分别表示机器实例的生产者编号,数据中心编号;
sequence=0表示每毫秒生产ID从0开始计数递增;
以下演算基于时间戳=1482394743339时刻进行推导。

一句话描述:以下演算模拟了1482394743339这一毫秒时刻,workerId=1,datacenterId=2的id生成器,生产第一个id的过程。

end!
参考
https://github.com/twitter/snowflake

https://www.cnblogs.com/relucent/p/4955340.html

转自:https://blog.csdn.net/li396864285/article/details/54668031

最后更新:2017-10-27 11:04:30

  上一篇:go  关于Expression Tree和IL Emit的所谓的"性能差别"
  下一篇:go  一句代码实现批量数据绑定[下篇]