HTAP數據庫 PostgreSQL 場景與性能測試之 20 - (OLAP) 用戶畫像圈人場景 - 多個字段任意組合條件篩選與透視
標簽
PostgreSQL , HTAP , OLTP , OLAP , 場景與性能測試
背景
PostgreSQL是一個曆史悠久的數據庫,曆史可以追溯到1973年,最早由2014計算機圖靈獎得主,關係數據庫的鼻祖Michael_Stonebraker 操刀設計,PostgreSQL具備與Oracle類似的功能、性能、架構以及穩定性。
PostgreSQL社區的貢獻者眾多,來自全球各個行業,曆經數年,PostgreSQL 每年發布一個大版本,以持久的生命力和穩定性著稱。
2017年10月,PostgreSQL 推出10 版本,攜帶諸多驚天特性,目標是勝任OLAP和OLTP的HTAP混合場景的需求:
《最受開發者歡迎的HTAP數據庫PostgreSQL 10特性》
1、多核並行增強
2、fdw 聚合下推
3、邏輯訂閱
4、分區
5、金融級多副本
6、json、jsonb全文檢索
7、還有插件化形式存在的特性,如 向量計算、JIT、SQL圖計算、SQL流計算、分布式並行計算、時序處理、基因測序、化學分析、圖像分析 等。
在各種應用場景中都可以看到PostgreSQL的應用:
PostgreSQL近年來的發展非常迅勐,從知名數據庫評測網站dbranking的數據庫評分趨勢,可以看到PostgreSQL向上發展的趨勢:
從每年PostgreSQL中國召開的社區會議,也能看到同樣的趨勢,參與的公司越來越多,分享的公司越來越多,分享的主題越來越豐富,橫跨了 傳統企業、互聯網、醫療、金融、國企、物流、電商、社交、車聯網、共享XX、雲、遊戲、公共交通、航空、鐵路、軍工、培訓、谘詢服務等 行業。
接下來的一係列文章,將給大家介紹PostgreSQL的各種應用場景以及對應的性能指標。
環境
環境部署方法參考:
《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(適合新用戶)》
阿裏雲 ECS:56核,224G,1.5TB*2 SSD雲盤
。
操作係統:CentOS 7.4 x64
數據庫版本:PostgreSQL 10
PS:ECS的CPU和IO性能相比物理機會打一定的折扣,可以按下降1倍性能來估算。跑物理主機可以按這裏測試的性能乘以2來估算。
場景 - 用戶畫像圈人場景 - 多個字段任意組合條件篩選與透視 (OLAP)
1、背景
用戶畫像表有多個字段,表示不同類型的標簽屬性,在進行人群圈選時,需要對任意字段的組合條件進行條件篩選,並對人群結果進行透視。
PostgreSQL 有3種方法實現多個字段的任意組合過濾。
1、布隆過濾,支持任意字段組合的等值查詢。
《PostgreSQL 9.6 黑科技 bloom 算法索引,一個索引支撐任意列組合查詢》
2、多索引 bitmap scan
gin複合索引,或者多個b-tree單列索引,都可以實現bitmap scan。
當輸入多個條件時,過濾、收斂到更少的數據塊,順序掃描+FILTER。
《PostgreSQL bitmapAnd, bitmapOr, bitmap index scan, bitmap heap scan》
3、GIN複合索引 bitmap scan
當輸入多個條件時,過濾、收斂到更少的數據塊,順序掃描+FILTER。
《寶劍贈英雄 - 任意組合字段等效查詢, 探探PostgreSQL多列展開式B樹 (GIN)》
2、設計
1億條記錄,每條記錄包含32個標簽字段,每個字段的標簽取值範圍1萬。另外包含3個屬性字段用於透視。
3、準備測試表
do language plpgsql $$
declare
sql text;
begin
sql := 'create table t_multi_col (id int8, c1 int default random()*100, c2 int default random()*10, c3 int default random()*10, ';
for i in 4..35 loop
sql := sql||'c'||i||' int default random()*10000,';
end loop;
sql := rtrim(sql, ',');
sql := sql||')';
execute sql;
end;
$$;
4、準備測試函數(可選)
5、準備測試數據
insert into t_multi_col (id) select generate_series(1,100000000);
1、布隆索引
create extension bloom;
do language plpgsql $$
declare
sql text;
begin
sql := 'create index idx_t_multi_col on t_multi_col using bloom (';
for i in 4..35 loop
sql := sql||'c'||i||',';
end loop;
sql := rtrim(sql, ',');
sql := sql||') with (length=80, ';
for i in 1..32 loop
sql := sql||'col'||i||'=2,';
end loop;
sql := rtrim(sql, ',');
sql := sql||')';
execute sql;
end;
$$;
2、GIN索引
create extension btree_gin;
do language plpgsql $$
declare
sql text;
begin
sql := 'create index idx_t_multi_col_gin on t_multi_col using gin (';
for i in 4..35 loop
sql := sql||'c'||i||',';
end loop;
sql := rtrim(sql, ',');
sql := sql||')';
execute sql;
end;
$$;
6、準備測試腳本
vi test.sql
\set a4 random(1,10000)
\set a5 random(1,10000)
\set a6 random(1,10000)
\set a7 random(1,10000)
\set a8 random(1,10000)
\set a9 random(1,10000)
select c1,c2,c3,count(*) from t_multi_col where c4=:a4 and c5=:a5 and c6=:a6 and c7=:a7 and c8=:a8 and c9=:a9 group by grouping sets ((c1),(c2),(c3));
7、測試
1、布隆索引,由於需要掃整個索引,耗時略高。500毫秒。
postgres=# explain (analyze,verbose,timing,costs,buffers) select c1,c2,c3,count(*) from t_multi_col where c4=3 and c5=2 and c6=1 and c7=4 and c8=5 and c9=6 and c10=1 and c11=1 and c12=1 group by grouping sets ((c1),(c2),(c3));
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------
HashAggregate (cost=2985297.24..2985297.28 rows=3 width=20) (actual time=499.961..499.961 rows=0 loops=1)
Output: c1, c2, c3, count(*)
Hash Key: t_multi_col.c1
Hash Key: t_multi_col.c2
Hash Key: t_multi_col.c3
Buffers: shared hit=197418
-> Bitmap Heap Scan on public.t_multi_col (cost=2985296.00..2985297.23 rows=1 width=12) (actual time=499.958..499.958 rows=0 loops=1)
Output: id, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30, c31, c32, c33, c34, c35
Recheck Cond: ((t_multi_col.c4 = 3) AND (t_multi_col.c5 = 2) AND (t_multi_col.c6 = 1) AND (t_multi_col.c7 = 4) AND (t_multi_col.c8 = 5) AND (t_multi_col.c9 = 6) AND (t_multi_col.c10 = 1) AND (t_multi_col.c11 = 1) AND (t_multi_col.c12 = 1))
Rows Removed by Index Recheck: 1339
Heap Blocks: exact=1339
Buffers: shared hit=197418
-> Bitmap Index Scan on idx_t_multi_col (cost=0.00..2985296.00 rows=1 width=0) (actual time=497.718..497.718 rows=1339 loops=1)
Index Cond: ((t_multi_col.c4 = 3) AND (t_multi_col.c5 = 2) AND (t_multi_col.c6 = 1) AND (t_multi_col.c7 = 4) AND (t_multi_col.c8 = 5) AND (t_multi_col.c9 = 6) AND (t_multi_col.c10 = 1) AND (t_multi_col.c11 = 1) AND (t_multi_col.c12 = 1))
Buffers: shared hit=196079
Planning time: 0.165 ms
Execution time: 500.025 ms
(17 rows)
2、gin索引,精準定位,耗時2毫秒以內。
postgres=# explain (analyze,verbose,timing,costs,buffers) select c1,c2,c3,count(*) from t_multi_col where c4=3 and c5=2 and c6=1 and c7=4 and c8=5 and c9=6 and c10=1 and c11=1 and c12=1 group by grouping sets ((c1),(c2),(c3));
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------
HashAggregate (cost=69.64..69.68 rows=3 width=20) (actual time=1.151..1.151 rows=0 loops=1)
Output: c1, c2, c3, count(*)
Hash Key: t_multi_col.c1
Hash Key: t_multi_col.c2
Hash Key: t_multi_col.c3
Buffers: shared hit=69
-> Bitmap Heap Scan on public.t_multi_col (cost=68.40..69.63 rows=1 width=12) (actual time=1.149..1.149 rows=0 loops=1)
Output: id, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30, c31, c32, c33, c34, c35
Recheck Cond: ((t_multi_col.c4 = 3) AND (t_multi_col.c5 = 2) AND (t_multi_col.c6 = 1) AND (t_multi_col.c7 = 4) AND (t_multi_col.c8 = 5) AND (t_multi_col.c9 = 6) AND (t_multi_col.c10 = 1) AND (t_multi_col.c11 = 1) AND (t_multi_col.c12 = 1))
Buffers: shared hit=69
-> Bitmap Index Scan on idx_t_multi_col_gin (cost=0.00..68.40 rows=1 width=0) (actual time=1.146..1.146 rows=0 loops=1)
Index Cond: ((t_multi_col.c4 = 3) AND (t_multi_col.c5 = 2) AND (t_multi_col.c6 = 1) AND (t_multi_col.c7 = 4) AND (t_multi_col.c8 = 5) AND (t_multi_col.c9 = 6) AND (t_multi_col.c10 = 1) AND (t_multi_col.c11 = 1) AND (t_multi_col.c12 = 1))
Buffers: shared hit=69
Planning time: 0.263 ms
Execution time: 1.245 ms
(15 rows)
壓測
CONNECTS=56
TIMES=300
export PGHOST=$PGDATA
export PGPORT=1999
export PGUSER=postgres
export PGPASSWORD=postgres
export PGDATABASE=postgres
pgbench -M prepared -n -r -f ./test.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES
8、測試結果
transaction type: ./test.sql
scaling factor: 1
query mode: prepared
number of clients: 56
number of threads: 56
duration: 300 s
number of transactions actually processed: 10740407
latency average = 1.564 ms
latency stddev = 0.561 ms
tps = 35796.375710 (including connections establishing)
tps = 35800.169989 (excluding connections establishing)
script statistics:
- statement latencies in milliseconds:
0.002 \set a4 random(1,10000)
0.000 \set a5 random(1,10000)
0.000 \set a6 random(1,10000)
0.000 \set a7 random(1,10000)
0.000 \set a8 random(1,10000)
0.000 \set a9 random(1,10000)
1.562 select c1,c2,c3,count(*) from t_multi_col where c4=:a4 and c5=:a5 and c6=:a6 and c7=:a7 and c8=:a8 and c9=:a9 group by grouping sets ((c1),(c2),(c3));
TPS: 35800
平均響應時間: 1.564 毫秒
實際上,除了BITMAPSCAN,還有一種存儲層優化,目前PostgreSQL內部引擎為行存儲引擎,通過插件支持列存儲,列存儲優化可以減少掃描的數據塊的數量,提高性能。
參考
《PostgreSQL、Greenplum 應用案例寶典《如來神掌》 - 目錄》
《PostgreSQL 使用 pgbench 測試 sysbench 相關case》
https://www.postgresql.org/docs/10/static/pgbench.html
最後更新:2017-11-12 02:06:18