Python開發者2017應該關注的7個類庫
Django 依然是 Python 開發者值得信賴的庫。然而,在 2016 年幾個還不太知名的庫引起了 Python 開發者的關注。在這篇博文中,我向大家揭示 7 個 Python 類庫,其中不包括像 Django,Flask 等已廣為熟知的庫,這些類庫在 2017 年可能值得 Python 開發者參考。
#1 Arrow
移動應用程序無處不在,而且全球人類都參與其中 – 無論是遊戲,社交媒體,健康監控或其他。然而, Python 的標準數據/時間庫的問題讓它很難滿足現代應用的需求,這些應用的目標受眾生活在不同的地區和國家。Arrow 就是克服這個問題的類庫之一。它擁有簡化創建,格式化,操作和轉換數據,以及時間和時間戳的功能。
該庫解決了 Python 2 或 3 的支持 datetime 類型的需求。使用 Arrow,開發人員可以輕鬆地將一個時區轉換為另一個時區。此外,Arrow 的日期,時間和日曆模塊打開了一站式服務的國際化應用程序的大門。
#2 TensorFlow
2015 年 11 月由 Google 推出的 TensorFlow 是一個用於數值計算的開源軟件庫。 自 TensorFlow 的推出才過去一年多的時間,但是這個庫已經在 Python 開發人員中獲得了相當大的人氣。 事實上, TensorFlow 是最時髦 GitHub Python 資源庫之一。
該庫可以在桌麵,服務器或移動設備中通過單個 API 使用運行在 GPU 和 CPUs 上的數據流圖能力。 TensorFlow 最初由 Google 機器智能研究機構的研究人員和工程師開發,用於機器學習和深度神經網絡研究。 雖然 TensorFlow 在機器學習社區中掀起了一些小的波瀾,但它已經被證明非常適合生產應用程序。
#3 Zappa
最開始的時候是由 AWS Lambda 帶來了無服務架構。而 Zappa 則被認為是改進了的 Python web 應用部署的程序。 Rich Jones 是 Zappa 的主要作者,並且是 Gun.io 的 CTO,他在一次采訪中說道:“我相信無服務架構(這意味著,係統沒有任何永久基礎設施)是網絡應用的未來”。
至於 Zappa,它讓所有 Python WSGI 的應用在 AWS Lambda + API 網關上的部署變得輕而易舉。在 VPS 服務(類似 Linode,PaaS服務的 Heroku )上擺脫依賴庫需要花費成百上千的美元。簡單來說,我們可以說 Zaapa 允許在雲上以微服務部署,不會有任何與服務器管理相關的麻煩事。Zappa 同樣也是很快的,可擴展的。
#4 Peewee
Peewee 是 Python 生態中簡單的,富有表現力的 ORM ,它支持 SQLite,MySQL 和 PostgreSQL。數據庫經常需要為應用去使用擴展的數據。不過,通過 ad hoc 連接串去 get 和 set 數據庫中的數據是一項非常有挑戰的任務。這種情況下,Peewee 就可以幫很大的忙了。這個庫對於開發者和數據庫工程師都是安全的,使用它可以以程序化的 Python 類來直觀地使用數據庫資源。
開發者們以前用 SQLAlchemy 已經創建了一個數據庫,應該會覺得使用 Peewee 創建數據庫是更容易的。另外,Peewee 一直以來都適用於 Flask web 框架。
點擊這裏學習如何在 Peewee 中創建一個數據庫
#5 Sanic + uvloop
Sanic 是一個與 Flask 類似,基於 uvloop 的 web 框架,它能讓 Python 更快速。Sanik,是基於 Python 3.5 設計的,它允許開發者在 async/await 語法上建立定義異步函數。在 Sanic 之前,Python 沒有辦法做到如此之快。uvloop 服務作為一個極其快速的庫,順其自然地替代了異步默認事件的循環。
Sanik 使得開發者能夠在 Python 中編寫異步應用,在這種方式下非常類似於 Node.js。但是通過 Sanic 作者的基準測試,uvloop 在處理超過每秒33k次請求時,依然表現良好,這超過了 Node.js 的性能。由於 Sanic 還很新,因此在不久的將來會有更多的改進和變更。你也可以到它的 開源庫中 做出貢獻。
# 6 Bokeh
你可能知道 Python 在數據可視化方麵的一些類庫,比如 matplotlib 和 seaborn。然而,Bokeh 是一個專門設計可視化交互並用於現代的 Web 瀏覽器的展示。開發者可以利用 Bokeh 以類似於 D3.js 的方式創建一流的可視媒體。除此之外,你可以利用非常大的或者流式的數據集來擴展更強的表現交互的能力。
你可以通過 Bokeh 創建可視化端點,儀表盤和數據應用。開發者也可以利用 Bokeh 處理通過其他類庫,比如 Matplotlib, Seaborn 和 ggplot 創建的可視化圖形。Bokeh 也可以和 Jupyter Notebooks 很好的結合來用於研究領域。
#7 Blaze
Blaze 用於處理數據庫和分析查詢的陣列技術。當對一個大到我們的電腦內存不能存儲的數據集進行分析時,NumPy 和 Pandas 往往不能派上用場。這時開發者經常求助於 PostgreSQL,MongoDB,Hadoop,Spark 和磁盤外存儲係統(PyTables and BColz)等等。
然而,理解每一個係統如何工作以及如何將數據整理成合適的形式是一個非常有挑戰性的工作。由於缺乏對於如何在新技術之間混合和遷移數據的認識,從數據分析中攫取有效的結論將是非常困難的。Blaze 通過提供一個對不同種類數據庫技術統一的接口以及遷移數據抽象化處理來解決這個難題。Blaze 對於表達計算是一個好的選擇。
盡管存在一些其他的不太知名但是有效的 Python 類庫,如 Gym + Universe,Boto3,Hug,Scrapy,Beautiful Soup等等。我隻能選擇這幾個以便這篇博客有一個結尾。Python 開發者可以研究這些類庫看看是否符合他們的需要,再合理的選擇合適的類庫。
本文作者:佚名
來源:51CTO
最後更新:2017-11-02 15:04:40