閱讀215 返回首頁    go 技術社區[雲棲]


雙隊列的一種實現

介紹

雙隊列是一種高效的內存數據結構,在多線程編程中,能保證生產者線程的寫入和消費者的讀出盡量做到最低的影響,避免了共享隊列的鎖開銷。本文將介紹一種雙隊列的設計,並給出實現代碼,然後會舉例使用的場景。該雙隊列在項目中使用,性能也得到了驗證。

設計

接下來具體介紹雙隊列的設計,並且會粘貼少量方法代碼,幫助介紹。
本文中講述的雙隊列,本質上是兩個數組保存寫入的Object,一個數組負責寫入,另一個被消費者讀出,兩個數組都對應一個重入鎖。數組內寫入的數據會被計數。
public class DoubleCachedQueue<T> extends AbstractQueue<T> implements
		BlockingQueue<T>, java.io.Serializable {
	private static final long serialVersionUID = 1L;
	
	private static int default_line_limit = 1000;
	
	private static long max_cache_size = 67108864L;

	private int lineLimit;
	
	private long cacheSize;

	private T[] itemsA;

	private T[] itemsB;

	private ReentrantLock readLock, writeLock;

	private Condition notFull;

	private Condition awake;

	/**
	 * writeArray : in reader's eyes, reader get data from data source and write
	 * data to this line array. readArray : in writer's eyes, writer put data to
	 * data destination from this line array.
	 * 
	 * Because of this is doubleQueue mechanism, the two line will exchange when
	 * time is suitable.
	 * 
	 */
	private T[] writeArray, readArray;

	private volatile int writeCount, readCount;

	private int writeArrayTP, readArrayHP;
	
	private volatile boolean closed = false;

	private int spillSize = 0;

	private long lineRx = 0;

	private long lineTx = 0;

隊列實現了阻塞隊列的接口,所以在向隊列offer數據的時候是阻塞的,同樣,取出操作poll也會阻塞。兩個數組會在適當的時候進行queueSwitch操作。queueSwitch的條件就是當讀者把queue讀空了之後,且寫入的queue此時不為空的時候,兩個queue就會進行交換。在交換的時候,寫入queue會被上鎖,此時生產者不能讓隊列裏寫入數據。一般情況下,queue互換其實就是兩個數組的引用互換,將相應的計數器也重置,寫隊列的計數器此時就清零了,因為queue交換是因為讀隊列已經被讀空。
private long queueSwitch(long timeout, boolean isInfinite)
			throws InterruptedException {
		System.out.println("queue switch");
		writeLock.lock();
		try {
			if (writeCount <= 0) {
				if (closed) {
					return -2;
				}
				try {
					if (isInfinite && timeout <= 0) {
						awake.await();
						return -1;
					} else {
						return awake.awaitNanos(timeout);
					}
				} catch (InterruptedException ie) {
					awake.signal();
					throw ie;
				}
			} else {
				T[] tmpArray = readArray;
				readArray = writeArray;
				writeArray = tmpArray;

				readCount = writeCount;
				readArrayHP = 0;

				writeCount = 0;
				writeArrayTP = 0;

				notFull.signal();
				// logger.debug("Queue switch successfully!");
				return -1;
			}
		} finally {
			writeLock.unlock();
		}
	}

上麵queue交換的時候,可以看到當要被交換的寫隊列也已經為空的時候,會做一次檢查。如果此時queue已經被顯示地關閉了,那麼poll操作就會返回空,讀者此時應該檢查queue是否已經被closed了,若已經closed了,那麼讀者已經把queue裏的數據讀完了。這裏的顯示close是我們給雙隊列加的一個狀態,close這件事的作用是為了讓讀者知道:生產者已經停止往queue裏寫新數據了,但是queue裏其實可能還有未取完的數據(在寫queue裏,此時還差一次queue switch),你往queue poll取數據的時候,如果取到空了,那麼應該做一次check,如果queue已經關閉了,那麼讀者就知道本次讀的任務完全結束了。反過來,close狀態其實不影響寫,生產者如果還想寫的話,其實也是可以的,但是我不推薦這麼做。
public void close() {
		writeLock.lock();
		try {
			closed = true;
			//System.out.println(this);
			awake.signalAll();
		} finally {
			writeLock.unlock();
		}
	}

如果沒有這個close標誌位的話,可能就需要消費者放入一個EOF讓讀者知道。這在隻有一個生產者和一個消費者的情況下是可行的,但是如果是一個多對一,一對多,甚至多對多的情況呢?一對一的情況是最簡單的,也是雙隊列被創造出來最合適的場景。因為雙隊列完全分離了一個生產者和一個消費者的鎖爭搶情況,各自隻要獲得自己的讀/寫隊列的鎖就可以了。在本文闡述的雙隊列中,唯一產生一些開銷的就是queue swtich的情況,如果queue頻繁交換的話,還是會產生一些性能開銷的。


一對多

上麵已經大致介紹了雙隊列的讀寫。在實際項目中,一對多的場景需要注意的地方有兩:
  • 單個生產者需要在結束的時候關閉queue
  • 多個消費者需要知道任務結束(知道其他線程已經完成任務)
第一點很簡單,比如讀文件的話,當生產者readLine()最後為空的時候,就認為數據源已經讀完,調用方法把queue close()。而消費者在讀queue的時候,有時候可能會由於延遲、queue交換等原因取到空數據,此時就如上麵一節所說,消費者線程拿到空數據後應該檢查queue的狀態,如果queue沒有關閉,那麼應該等待一小會兒後繼續poll數據;如果queue關閉了,那麼其實說明該線程已經完成了任務。同理,其他消費者線程也應該在取到空的時候做這樣的操作。


消費者之間或者外部有一方需要知道各個消費者線程的存活情況,這樣才能知道本次任務完成。比如如果外麵有一個上帝的話,可以加一個CountDownLatch計數,每個消費者完成後就countDown一次,外部調用await()直到大家都已經退出,那麼整個任務結束。如果沒有上帝,線程之間互相知道對方情況的話,我的做法是讓生產者放入一個EOF,當某線程取到EOF的時候,他知道自己是第一個遇到盡頭的人,他會置一個布爾,而其他線程在取到空的時候會檢查該布爾值,這樣就能知道是否已經有小夥伴已經拿到EOF了,那麼這時候就可以countDown了,而拿到EOF的線程進程countDown後就await(),最後退出。
下麵是我自己針對這種場景,使用雙隊列的方式,其中的fromQueue是一個ConcurrentLinkedQueue,大家可以忽略,toQueue是雙隊列,可以注意一下用法。特別是往裏麵寫的時候,需要while循環重試直到寫入成功。
@Override
public void run() {
	long start = System.currentTimeMillis();
	log.debug(Thread.currentThread() + " Unpacker started at " + start);
		
	Random r = new Random(start);
	Bundle bundle = null;
	boolean shoudShutdown = false;
	try {
		while(!shoudShutdown) {
			bundle = (Bundle) fromQueue.poll();
			if (bundle == null) {
				if (seeEOF.get()) {
					// 當取到空,並且其他線程已經取到EOF,那麼本線程將Latch減1,並退出循環
					latch.countDown();
					shoudShutdown = true;
				} else {
					// 如果EOF還沒被取到,本線程小睡一會後繼續取
					try {
						sleep(r.nextInt(10));
					} catch (InterruptedException e) {
						log.error("Interrupted when taking a nap", e);
					}
				}
			} else if (!bundle.isEof()) {
			// bundle非空且非EOF,則往雙隊列寫入一個Bundle
			byte[] lineBytes = BundleUtil.getDecompressedData(bundle);
			// 放入雙隊列時,若offer失敗則重試
			while (!toQueue.offer(new UnCompressedBundle(bundle.getId(), ByteUtil.bytes2Lines(lineBytes, lineDelim), bundle.getIndex(), bundle.getJobId()))) {
				log.info("Unpacker put failed, will retry");
			}
			log.info("After enqueue, queue size is " + toQueue.size());
			} else {
				// Unpacker獲得到了EOF
				seeEOF.set(true);
				// 自己將Lacth減1,並等待其他線程退出
				latch.countDown();
				try {
					latch.await();
				} catch (InterruptedException e) {
					log.error("Interrupted when waiting the latch ");
				}
				// 其他線程已經退出,本線程放入EOF
				while (!toQueue.offer(new UnCompressedBundle(-1L, new Line[0], -1L, -1L))) {
					log.info("Unpacker put EOF failed, will retry");
				}
				// 關閉Queue
				toQueue.close();
				// 退出循環
				shoudShutdown = true;
			}
		}
		log.debug(Thread.currentThread() + " Unpacker finished in " + (System.currentTimeMillis()-start) + " ms");
	} catch (Exception e) {
		log.error("Exception when unpacker is running ", e);
		// 將latch減1,表示自己異常退出,且不再工作
		// latch.countDown();
		log.debug(Thread.currentThread() + " Unpacker occured exception and stopped. ");
	} finally {
		
	}
}

多對一

多個生產者的情況下,寫入隊列無可避免發送鎖爭搶,但是能保證消費者的穩定讀出過程。沒有什麼特殊處理的地方,這裏就不囉嗦了。

總結分析

本文介紹了一種經典雙隊列的設計和實現,也給出了一些代碼演示。文章末尾我會貼出整個雙隊列的代碼實現,需要的同學也可以留言,我把.java發給你。如果使用的時候有發現問題,不吝賜教,這個雙隊列的實現也還不是很完美。使用的時候也存在需要注意的地方。
其實雙隊列的目的還是在於讓寫和讀互相沒有影響,而且更加照顧了寫的速度。因為一般寫的速度可能會比較快,而讀的人讀出之後還會做一些額外的處理,所以寫的這一方借助雙隊列,可以持續寫的過程,而且如果讀的一方慢的話,可以多起幾個消費者線程,就像"一對多"場景裏闡述的那樣來使用雙隊列。

下麵是整個實現。各位可以仔細看看,發現問題一定記得通知我 :)

import java.util.AbstractQueue;
import java.util.Collection;
import java.util.Iterator;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;


import lombok.ToString;
import lombok.extern.log4j.Log4j;


/**
 * Represents a region with two swap spaces, one for storing data which from
 * data source, the other one for storing data which will be transferred to data
 * destination.
 * <br>
 * A classical DoubleCachedQueue, In beginning, space A and space B both
 * empty, then loading task begin to load data to space A, when A is almost
 * full, let the data from data source being loaded to space B, then dumping
 * task begin to dump data from space A to data source. When space A is empty,
 * switch the two spaces for load and dump task. Repeat the above operation.
 * 
 */
@Log4j
@ToString
public class DoubleCachedQueue<T> extends AbstractQueue<T> implements
		BlockingQueue<T>, java.io.Serializable {
	private static final long serialVersionUID = 1L;
	
	private static int default_line_limit = 1000;
	
	private static long max_cache_size = 67108864L;

	private int lineLimit;
	
	private long cacheSize;

	private T[] itemsA;

	private T[] itemsB;

	private ReentrantLock readLock, writeLock;

	private Condition notFull;

	private Condition awake;

	/**
	 * writeArray : in reader's eyes, reader get data from data source and write
	 * data to this line array. readArray : in writer's eyes, writer put data to
	 * data destination from this line array.
	 * 
	 * Because of this is doubleQueue mechanism, the two line will exchange when
	 * time is suitable.
	 * 
	 */
	private T[] writeArray, readArray;

	private volatile int writeCount, readCount;

	private int writeArrayTP, readArrayHP;
	
	private volatile boolean closed = false;

	private int spillSize = 0;

	private long lineRx = 0;

	private long lineTx = 0;

	/**
	 * Get info of line number in {@link DoubleCachedQueue} space.
	 * 
	 * @return Information of line number.
	 * 
	 */
	public String info() {
		return String.format("Write Array: %s/%s; Read Array: %s/%s", writeCount, writeArray.length, readCount, readArray.length);
	}

	/**
	 * Use the two parameters to construct a {@link DoubleCachedQueue} which hold the
	 * swap areas.
	 * 
	 * @param lineLimit
	 *            Limit of the line number the {@link DoubleCachedQueue} can hold.
	 * 
	 * @param byteLimit
	 *            Limit of the bytes the {@link DoubleCachedQueue} can hold.
	 * 
	 */
	public DoubleCachedQueue(int lineLimit) {
		if (lineLimit <= 0) {
			this.lineLimit = default_line_limit;
		}else{
			this.lineLimit = lineLimit;
		}
		itemsA = (T[])new Object[lineLimit];
		itemsB = (T[])new Object[lineLimit];

		readLock = new ReentrantLock();
		writeLock = new ReentrantLock();

		notFull = writeLock.newCondition();
		awake = writeLock.newCondition();

		readArray = itemsA;
		writeArray = itemsB;
		spillSize = lineLimit * 8 / 10;
	}
	
	public DoubleCachedQueue(long cacheSize){
		if (cacheSize <= 0) {
			throw new IllegalArgumentException(
					"Queue initial capacity can't less than 0!");
		}
		this.cacheSize = cacheSize > max_cache_size ? max_cache_size : cacheSize;
		
		readLock = new ReentrantLock();
		writeLock = new ReentrantLock();

		notFull = writeLock.newCondition();
		awake = writeLock.newCondition();

		readArray = itemsA;
		writeArray = itemsB;
		spillSize = lineLimit * 8 / 10;
	}

	/**
	 * Get line number of the {@link DoubleCachedQueue}
	 * 
	 * @return lineLimit Limit of the line number the {@link DoubleCachedQueue} can
	 *         hold.
	 * 
	 */
	public int getLineLimit() {
		return lineLimit;
	}

	/**
	 * Set line number of the {@link DoubleCachedQueue}.
	 * 
	 * @param capacity
	 *            Limit of the line number the {@link DoubleCachedQueue} can hold.
	 * 
	 */
	public void setLineLimit(int capacity) {
		this.lineLimit = capacity;
	}

	/**
	 * Insert one line of record to a apace which buffers the swap data.
	 * 
	 * @param line
	 *            The inserted line.
	 * 
	 */
	private void insert(T line) {
		writeArray[writeArrayTP] = line;
		++writeArrayTP;
		++writeCount;
		++lineRx;
	}

	/**
	 * Insert a line array(appointed the limit of array size) of data to a apace
	 * which buffers the swap data.
	 * 
	 * @param lines
	 *            Inserted line array.
	 * 
	 * @param size
	 *            Limit of inserted size of the line array.
	 * 
	 */
	private void insert(T[] lines, int size) {
		if(size > 0){
			System.arraycopy(lines, 0, writeArray, writeArrayTP, size);
			writeArrayTP = writeArrayTP + size;
			writeCount = writeCount + size;
			lineRx = lineRx + size;
		}
//		for (int i = 0; i < size; ++i) {
//			writeArray[writeArrayTP] = lines[i];
//			++writeArrayTP;
//			++writeCount;
//			++lineRx;
//			if(lines[i] != null && lines[i].getLine() != null){
//				byteRx += lines[i].getLine().length();
//			}
//		}
	}

	/**
	 * Extract one line of record from the space which contains current data.
	 * 
	 * @return line A line of data.
	 * 
	 */
	private T extract() {
		T e = readArray[readArrayHP];
		readArray[readArrayHP] = null;
		++readArrayHP;
		--readCount;
		++lineTx;
		return e;
	}

	/**
	 * Extract a line array of data from the space which contains current data.
	 * 
	 * @param ea
	 * @return Extracted line number of data.
	 * 
	 */
	private int extract(T[] ea) {
		int readsize = Math.min(ea.length, readCount);
		if(readsize > 0){
			readCount = readCount - readsize;
			lineTx = lineTx + readsize;
			System.arraycopy(readArray, readArrayHP, ea, 0, readsize);
			readArrayHP = readArrayHP + readsize;
		}
//		for (int i = 0; i < readsize; ++i) {
//			ea[i] = readArray[readArrayHP];
//			readArray[readArrayHP] = null;
//			++readArrayHP;
//			--readCount;
//			++lineTx;
//		}
		return readsize;
	}

	/**
	 * switch condition: read queue is empty && write queue is not empty.
	 * Notice:This function can only be invoked after readLock is grabbed,or may
	 * cause dead lock.
	 * 
	 * @param timeout
	 * 
	 * @param isInfinite
	 *            whether need to wait forever until some other thread awake it.
	 * 
	 * @return
	 * 
	 * @throws InterruptedException
	 * 
	 */

	private long queueSwitch(long timeout, boolean isInfinite)
			throws InterruptedException {
		System.out.println("queue switch");
		writeLock.lock();
		try {
			if (writeCount <= 0) {
				if (closed) {
					return -2;
				}
				try {
					if (isInfinite && timeout <= 0) {
						awake.await();
						return -1;
					} else {
						return awake.awaitNanos(timeout);
					}
				} catch (InterruptedException ie) {
					awake.signal();
					throw ie;
				}
			} else {
				T[] tmpArray = readArray;
				readArray = writeArray;
				writeArray = tmpArray;

				readCount = writeCount;
				readArrayHP = 0;

				writeCount = 0;
				writeArrayTP = 0;

				notFull.signal();
				// logger.debug("Queue switch successfully!");
				return -1;
			}
		} finally {
			writeLock.unlock();
		}
	}

	/**
	 * If exists write space, it will return true, and write one line to the
	 * space. otherwise, it will try to do that in a appointed time,when time is
	 * out if still failed, return false.
	 * 
	 * @param line
	 *            a Line.
	 * 
	 * @param timeout
	 *            appointed limit time
	 * 
	 * @param unit
	 *            time unit
	 * 
	 * @return True if success,False if failed.
	 * 
	 */
	public boolean offer(T line, long timeout, TimeUnit unit)
			throws InterruptedException {
		if (line == null) {
			throw new NullPointerException();
		}
		long nanoTime = unit.toNanos(timeout);
		writeLock.lockInterruptibly();
		if(itemsA == null || itemsB == null){
			initArray(line);
		}
		try {
			for (;;) {
				if (writeCount < writeArray.length) {
					insert(line);
					if (writeCount == 1) {
						awake.signal();
					}
					return true;
				}

				// Time out
				if (nanoTime <= 0) {
					return false;
				}
				// keep waiting
				try {
					nanoTime = notFull.awaitNanos(nanoTime);
				} catch (InterruptedException ie) {
					notFull.signal();
					throw ie;
				}
			}
		} finally {
			writeLock.unlock();
		}
	}

	private void initArray(T line) {
		
		long recordLength = computeSize(line);
		long size = cacheSize/recordLength;
		if(size <= 0){
			size = default_line_limit;
		}
		lineLimit = (int) size;
		itemsA = (T[])new Object[(int) size];
		itemsB = (T[])new Object[(int) size];
		readArray = itemsA;
		writeArray = itemsB;
		
	}

	public long computeSize(T line){
		return 1;
	}

	/**
	 * If exists write space, it will return true, and write a line array to the
	 * space.<br>
	 * otherwise, it will try to do that in a appointed time,when time out if
	 * still failed, return false.
	 * 
	 * @param lines
	 *            line array contains lines of data
	 * 
	 * @param size
	 *            Line number needs to write to the space.
	 * 
	 * @param timeout
	 *            appointed limit time
	 * 
	 * @param unit
	 *            time unit
	 * 
	 * @return status of this operation, true or false.
	 * 
	 * @throws InterruptedException
	 *             if being interrupted during the try limit time.
	 * 
	 */
	public boolean offer(T[] lines, int size, long timeout, TimeUnit unit)
			throws InterruptedException {
		if (lines == null || lines.length == 0) {
			throw new NullPointerException();
		}
		long nanoTime = unit.toNanos(timeout);
		writeLock.lockInterruptibly();
		if(itemsA == null || itemsB == null){
			initArray(lines[0]);
		}
		try {
			for (;;) {
				if (writeCount + size <= writeArray.length) {
					insert(lines, size);
					if (writeCount >= spillSize) {
						awake.signalAll();
					}
					return true;
				}

				// Time out
				if (nanoTime <= 0) {
					return false;
				}
				// keep waiting
				try {
					nanoTime = notFull.awaitNanos(nanoTime);
				} catch (InterruptedException ie) {
					notFull.signal();
					throw ie;
				}
			}
		} finally {
			writeLock.unlock();
		}
	}

	/**
	 * Close the synchronized lock and one inner state.
	 * 
	 */
	public void close() {
		writeLock.lock();
		try {
			closed = true;
			//System.out.println(this);
			awake.signalAll();
		} finally {
			writeLock.unlock();
		}
	}

	public boolean isClosed() {
		return closed;
	}

	/**
	 * 
	 * 
	 * @param timeout
	 *            appointed limit time
	 * 
	 * @param unit
	 *            time unit
	 */
	public T poll(long timeout, TimeUnit unit) throws InterruptedException {
		long nanoTime = unit.toNanos(timeout);
		readLock.lockInterruptibly();

		try {
			for (;;) {
				if (readCount > 0) {
					return extract();
				}

				if (nanoTime <= 0) {
					return null;
				}
				nanoTime = queueSwitch(nanoTime, true);
			}
		} finally {
			readLock.unlock();
		}
	}

	/**
	 * 
	 * @param ea
	 *            line buffer
	 * 
	 * 
	 * @param timeout
	 *            a appointed limit time
	 * 
	 * @param unit
	 *            a time unit
	 * 
	 * @return line number of data.if less or equal than 0, means fail.
	 * 
	 * @throws InterruptedException
	 *             if being interrupted during the try limit time.
	 */
	public int poll(T[] ea, long timeout, TimeUnit unit)
			throws InterruptedException {
		long nanoTime = unit.toNanos(timeout);
		readLock.lockInterruptibly();

		try {
			for (;;) {
				if (readCount > 0) {
					return extract(ea);
				}

				if (nanoTime == -2) {
					return -1;
				}

				if (nanoTime <= 0) {
					return 0;
				}
				nanoTime = queueSwitch(nanoTime, false);
			}
		} finally {
			readLock.unlock();
		}
	}

	public Iterator<T> iterator() {
		return null;
	}

	/**
	 * Get size of {@link Storage} in bytes.
	 * 
	 * @return Storage size.
	 * 
	 * */
	@Override
	public int size() {
		return (writeCount + readCount);
	}

	@Override
	public int drainTo(Collection<? super T> c) {
		return 0;
	}

	@Override
	public int drainTo(Collection<? super T> c, int maxElements) {
		return 0;
	}

	/**
	 * If exists write space, it will return true, and write one line to the
	 * space.<br>
	 * otherwise, it will try to do that in a appointed time(20
	 * milliseconds),when time out if still failed, return false.
	 * 
	 * @param line
	 *            a Line.
	 * 
	 * @see DoubleCachedQueue#offer(Line, long, TimeUnit)
	 * 
	 */
	@Override
	public boolean offer(T line) {
		try {
			return offer(line, 20, TimeUnit.MILLISECONDS);
		} catch (InterruptedException e1) {
			log.debug(e1.getMessage(), e1);
		}
		return false;
	}

	@Override
	public void put(T e) throws InterruptedException {
	}

	@Override
	public int remainingCapacity() {
		return 0;
	}

	@Override
	public T take() throws InterruptedException {
		return null;
	}

	@Override
	public T peek() {
		return null;
	}

	@Override
	public T poll() {
		try {
			return poll(1*1000, TimeUnit.MILLISECONDS);
		} catch (InterruptedException e) {
			log.debug(e.getMessage(), e);
		}
		return null;
	}

}


(全文完)

最後更新:2017-04-03 12:55:21

  上一篇:go C# DataTable.NewRow 方法
  下一篇:go Apache下實現禁止目錄瀏覽