閱讀560 返回首頁    go 技術社區[雲棲]


Spark技術內幕:Client,Master和Worker 通信源碼解析

Spark的Cluster Manager可以有幾種部署模式:

  1. Standlone
  2. Mesos
  3. YARN
  4. EC2
  5. Local

在向集群提交計算任務後,係統的運算模型就是Driver Program定義的SparkContext向APP Master提交,有APP Master進行計算資源的調度並最終完成計算。具體闡述可以閱讀《Spark:大數據的電花火石! 》。

那麼Standalone模式下,Client,Master和Worker是如何進行通信,注冊並開啟服務的呢?


1. node之間的RPC - akka

模塊間通信有很多成熟的實現,現在很多成熟的Framework已經早已經讓我們擺脫原始的Socket編程了。簡單歸類,可以歸納為基於消息的傳遞和基於資源共享的同步機製。

基於消息的傳遞的機製應用比較廣泛的有Message Queue。Message Queue, 是一種應用程序對應用程序的通信方法。應用程序通過讀寫出入隊列的消息(針對應用程序的數據)來通信,而無需專用連接來鏈接它們。消 息傳遞指的是程序之間通過在消息中發送數據進行通信,而不是通過直接調用彼此來通信,直接調用通常是用於諸如遠程過程調用的技術。排隊指的是應用程序通過 隊列來通信。隊列的使用除去了接收和發送應用程序同時執行的要求。其中較為成熟的MQ產品有IBM WEBSPHERE MQ和RabbitMQ(AMQP的開源實現,現在由Pivotal維護)。

還有不得不提的是ZeroMQ,一個致力於進入Linux內核的基於Socket的編程框架。官方的說法: “ZeroMQ是一個簡單好用的傳輸層,像框架一樣的一個socket library,它使得Socket編程更加簡單、簡潔和性能更高。是一個消息處理隊列庫,可在多個線程、內核和主機盒之間彈性伸縮。ZMQ的明確目標是“成為標準網絡協議棧的一部分,之後進入Linux內核”。

Spark在很多模塊之間的通信選擇是Scala原生支持的akka,一個用 Scala 編寫的庫,用於簡化編寫容錯的、高可伸縮性的 Java 和 Scala 的 Actor 模型應用。akka有以下5個特性:

  1. 易於構建並行和分布式應用 (Simple Concurrency & Distribution):  Akka在設計時采用了異步通訊和分布式架構,並對上層進行抽象,如Actors、Futures ,STM等。
  2. 可靠性(Resilient by Design): 係統具備自愈能力,在本地/遠程都有監護。
  3. 高性能(High Performance):在單機中每秒可發送50,000,000個消息。內存占用小,1GB內存中可保存2,500,000個actors。
  4. 彈性,無中心(Elastic — Decentralized):自適應的負責均衡,路由,分區,配置
  5. 可擴展(Extensible):可以使用Akka 擴展包進行擴展。

在Spark中的Client,Master和Worker實際上都是一個actor,拿Client來說:

import akka.actor._
import akka.pattern.ask
import akka.remote.{AssociationErrorEvent, DisassociatedEvent, RemotingLifecycleEvent}

private class ClientActor(driverArgs: ClientArguments, conf: SparkConf) extends Actor with Logging {
  var masterActor: ActorSelection = _
  val timeout = AkkaUtils.askTimeout(conf)

  override def preStart() = {
    masterActor = context.actorSelection(Master.toAkkaUrl(driverArgs.master))

    context.system.eventStream.subscribe(self, classOf[RemotingLifecycleEvent])

    println(s"Sending ${driverArgs.cmd} command to ${driverArgs.master}")

    driverArgs.cmd match {
      case "launch" =>
        ...
        masterActor ! RequestSubmitDriver(driverDescription)

      case "kill" =>
        val driverId = driverArgs.driverId
        val killFuture = masterActor ! RequestKillDriver(driverId)
    }
  }

  override def receive = {

    case SubmitDriverResponse(success, driverId, message) =>
      println(message)
      if (success) pollAndReportStatus(driverId.get) else System.exit(-1)

    case KillDriverResponse(driverId, success, message) =>
      println(message)
      if (success) pollAndReportStatus(driverId) else System.exit(-1)

    case DisassociatedEvent(_, remoteAddress, _) =>
      println(s"Error connecting to master ${driverArgs.master} ($remoteAddress), exiting.")
      System.exit(-1)

    case AssociationErrorEvent(cause, _, remoteAddress, _) =>
      println(s"Error connecting to master ${driverArgs.master} ($remoteAddress), exiting.")
      println(s"Cause was: $cause")
      System.exit(-1)
  }
}

/**
 * Executable utility for starting and terminating drivers inside of a standalone cluster.
 */
object Client {
  def main(args: Array[String]) {
    println("WARNING: This client is deprecated and will be removed in a future version of Spark.")
    println("Use ./bin/spark-submit with \"--master spark://host:port\"")

    val conf = new SparkConf()
    val driverArgs = new ClientArguments(args)

    if (!driverArgs.logLevel.isGreaterOrEqual(Level.WARN)) {
      conf.set("spark.akka.logLifecycleEvents", "true")
    }
    conf.set("spark.akka.askTimeout", "10")
    conf.set("akka.loglevel", driverArgs.logLevel.toString.replace("WARN", "WARNING"))
    Logger.getRootLogger.setLevel(driverArgs.logLevel)

    // TODO: See if we can initialize akka so return messages are sent back using the same TCP
    //       flow. Else, this (sadly) requires the DriverClient be routable from the Master.
    val (actorSystem, _) = AkkaUtils.createActorSystem(
      "driverClient", Utils.localHostName(), 0, conf, new SecurityManager(conf))

    actorSystem.actorOf(Props(classOf[ClientActor], driverArgs, conf))

    actorSystem.awaitTermination()
  }
}

其中第19行的含義就是向Master提交Driver的請求,

masterActor ! RequestSubmitDriver(driverDescription)

而Master將在receive裏處理這個請求。當然了27行到44行的是處理Client Actor收到的消息。

可以看出,通過akka,可以非常簡單高效的處理模塊間的通信,這可以說是Spark RPC的一大特色。


2. Client,Master和Workerq啟動通信詳解

源碼位置:spark-1.0.0\core\src\main\scala\org\apache\spark\deploy。主要涉及的類:Client.scala, Master.scala和Worker.scala。這三大模塊之間的通信框架如下圖。

Standalone模式下存在的角色:

  1. Client:負責提交作業到Master。

  2. Master:接收Client提交的作業,管理Worker,並命令Worker啟動Driver和Executor。

  3. Worker:負責管理本節點的資源,定期向Master匯報心跳,接收Master的命令,比如啟動Driver和Executor。

實際上,Master和Worker要處理的消息要比這多得多,本圖隻是反映了集群啟動和向集群提交運算時候的主要消息處理。

接下來將分別走讀這三大角色的源碼。


2.1 Client源碼解析

Client啟動:

object Client {
  def main(args: Array[String]) {
    println("WARNING: This client is deprecated and will be removed in a future version of Spark.")
    println("Use ./bin/spark-submit with \"--master spark://host:port\"")

    val conf = new SparkConf()
    val driverArgs = new ClientArguments(args)

    if (!driverArgs.logLevel.isGreaterOrEqual(Level.WARN)) {
      conf.set("spark.akka.logLifecycleEvents", "true")
    }
    conf.set("spark.akka.askTimeout", "10")
    conf.set("akka.loglevel", driverArgs.logLevel.toString.replace("WARN", "WARNING"))
    Logger.getRootLogger.setLevel(driverArgs.logLevel)

    // TODO: See if we can initialize akka so return messages are sent back using the same TCP
    //       flow. Else, this (sadly) requires the DriverClient be routable from the Master.
    val (actorSystem, _) = AkkaUtils.createActorSystem(
      "driverClient", Utils.localHostName(), 0, conf, new SecurityManager(conf))
    // 使用ClientActor初始化actorSystem
    actorSystem.actorOf(Props(classOf[ClientActor], driverArgs, conf))
    //啟動並等待actorSystem的結束
    actorSystem.awaitTermination()
  }
}

從行21可以看出,核心實現是由ClientActor實現的。Client的Actor是akka.Actor的一個擴展。對於Actor,從它對recevie的override就可以看出它需要處理的消息。

  override def receive = {

    case SubmitDriverResponse(success, driverId, message) =>
      println(message)
      if (success) pollAndReportStatus(driverId.get) else System.exit(-1)

    case KillDriverResponse(driverId, success, message) =>
      println(message)
      if (success) pollAndReportStatus(driverId) else System.exit(-1)

    case DisassociatedEvent(_, remoteAddress, _) =>
      println(s"Error connecting to master ${driverArgs.master} ($remoteAddress), exiting.")
      System.exit(-1)

    case AssociationErrorEvent(cause, _, remoteAddress, _) =>
      println(s"Error connecting to master ${driverArgs.master} ($remoteAddress), exiting.")
      println(s"Cause was: $cause")
      System.exit(-1)
  }


2.2 Master的源碼分析

源碼分析詳見注釋。

 override def receive = {
    case ElectedLeader => {
      // 被選為Master,首先判斷是否該Master原來為active,如果是那麼進行Recovery。
    }
    case CompleteRecovery => completeRecovery() // 刪除沒有響應的worker和app,並且將所有沒有worker的Driver分配worker
    case RevokedLeadership => {
      // Master將關閉。
    }
    case RegisterWorker(id, workerHost, workerPort, cores, memory, workerUiPort, publicAddress) =>
    {      
      // 如果該Master不是active,不做任何操作,返回
      // 如果注冊過該worker id,向sender返回錯誤
      sender ! RegisterWorkerFailed("Duplicate worker ID")
      // 注冊worker,如果worker注冊成功則返回成功的消息並且進行調度
      sender ! RegisteredWorker(masterUrl, masterWebUiUrl)
      schedule()
      // 如果worker注冊失敗,發送消息到sender
      sender ! RegisterWorkerFailed("Attempted to re-register worker at same address: " + workerAddress)
    }
    case RequestSubmitDriver(description) => {
        // 如果master不是active,返回錯誤
        sender ! SubmitDriverResponse(false, None, msg)
        // 否則創建driver,返回成功的消息
        sender ! SubmitDriverResponse(true, Some(driver.id), s"Driver successfully submitted as ${driver.id}")
      }
    }
    case RequestKillDriver(driverId) => {
      if (state != RecoveryState.ALIVE) {
        // 如果master不是active,返回錯誤
        val msg = s"Can only kill drivers in ALIVE state. Current state: $state."
        sender ! KillDriverResponse(driverId, success = false, msg)
      } else {
        logInfo("Asked to kill driver " + driverId)
        val driver = drivers.find(_.id == driverId)
        driver match {
          case Some(d) =>
              //如果driver仍然在等待隊列,從等待隊列刪除並且更新driver狀態為KILLED
            } else {
              // 通知worker kill driver id的driver。結果會由workder發消息給master ! DriverStateChanged
              d.worker.foreach { w => w.actor ! KillDriver(driverId) }
            }
            // 注意,此時driver不一定被kill,master隻是通知了worker去kill driver。
            sender ! KillDriverResponse(driverId, success = true, msg)
          case None =>
            // driver已經被kill,直接返回結果
            sender ! KillDriverResponse(driverId, success = false, msg)
        }
      }
    }
    case RequestDriverStatus(driverId) => {
      // 查找請求的driver,如果找到則返回driver的狀態
      (drivers ++ completedDrivers).find(_.id == driverId) match {
        case Some(driver) =>
          sender ! DriverStatusResponse(found = true, Some(driver.state),
            driver.worker.map(_.id), driver.worker.map(_.hostPort), driver.exception)
        case None =>
          sender ! DriverStatusResponse(found = false, None, None, None, None)
      }
    }
    case RegisterApplication(description) => {
        //如果是standby,那麼忽略這個消息
        //否則注冊application;返回結果並且開始調度
    }
    case ExecutorStateChanged(appId, execId, state, message, exitStatus) => {
      // 通過idToApp獲得app,然後通過app獲得executors,從而通過execId獲得executor
      val execOption = idToApp.get(appId).flatMap(app => app.executors.get(execId))
      execOption match {
        case Some(exec) => {
          exec.state = state
          exec.application.driver ! ExecutorUpdated(execId, state, message, exitStatus)
          if (ExecutorState.isFinished(state)) {
            val appInfo = idToApp(appId)
            // Remove this executor from the worker and app
            logInfo("Removing executor " + exec.fullId + " because it is " + state)
            appInfo.removeExecutor(exec)
            exec.worker.removeExecutor(exec)
           }
      }
    }
    case DriverStateChanged(driverId, state, exception) => {
      //  如果Driver的state為ERROR | FINISHED | KILLED | FAILED, 刪除它。
    }
    case Heartbeat(workerId) => {
      // 更新worker的時間戳 workerInfo.lastHeartbeat = System.currentTimeMillis()
    }
    case MasterChangeAcknowledged(appId) => {
      //  將appId的app的狀態置為WAITING,為切換Master做準備。
      }
    case WorkerSchedulerStateResponse(workerId, executors, driverIds) => {
      // 通過workerId查找到worker,那麼worker的state置為ALIVE,
      // 並且查找狀態為idDefined的executors,並且將這些executors都加入到app中,
      // 然後保存這些app到worker中。可以理解為Worker在Master端的Recovery
      idToWorker.get(workerId) match {
        case Some(worker) =>
          logInfo("Worker has been re-registered: " + workerId)
          worker.state = WorkerState.ALIVE

          val validExecutors = executors.filter(exec => idToApp.get(exec.appId).isDefined)
          for (exec <- validExecutors) {
            val app = idToApp.get(exec.appId).get
            val execInfo = app.addExecutor(worker, exec.cores, Some(exec.execId))
            worker.addExecutor(execInfo)
            execInfo.copyState(exec)
          }
          // 將所有的driver設置為RUNNING然後加入到worker中。
          for (driverId <- driverIds) {
            drivers.find(_.id == driverId).foreach { driver =>
              driver.worker = Some(worker)
              driver.state = DriverState.RUNNING
              worker.drivers(driverId) = driver
            }
          }
      }
    }
    case DisassociatedEvent(_, address, _) => {
      // 這個請求是Worker或者是App發送的。刪除address對應的Worker和App
      // 如果Recovery可以結束,那麼結束Recovery      
    }
    case RequestMasterState => {
      //向sender返回master的狀態
      sender ! MasterStateResponse(host, port, workers.toArray, apps.toArray, completedApps.toArray, drivers.toArray, completedDrivers.toArray, state)
    }
    case CheckForWorkerTimeOut => {
      //刪除超時的Worker
    }
    case RequestWebUIPort => {
      //向sender返回web ui的端口號
      sender ! WebUIPortResponse(webUi.boundPort)
    }
  }


2.3 Worker 源碼解析

通過對Client和Master的源碼解析,相信你也知道如何去分析Worker是如何和Master進行通信的了,沒錯,答案就在下麵:

override def receive

參考資料:

Spark源碼1.0.0。


請您支持:如果您讀到這裏,相信本文對您有所幫助,請點擊投票支持一下吧。如果您已經在投票頁麵,請點擊下麵的投一票吧!

BTW,即使您沒有CSDN的帳號,可以使用第三方登錄的,包括微博,QQ,Gmail,GitHub,百度,等。

最後更新:2017-04-03 07:57:06

  上一篇:go SSL/TLS協議運行機製的概述
  下一篇:go Linux內核slub溢出攻擊技術