90
技術社區[雲棲]
Maxcompute的任務狀態和多任務執行
我們在使用maxcompute的時候,我們其實非常期望知道當前有多少任務在跑,哪些任務耗時長,哪些任務已經完成,並且能通過任務的logview來分析任務耗時長的原因。
任務狀態監控
Maxcompute的任務狀態分Running和Terminated, 其中Running是包含:正在運行和等待運行的兩種狀態,Terminated包含:完成、失敗、cancel的任務三個狀態。阿裏雲提供了獲取上述2種狀態的SDK函數,odps.list_instances(status=Running|Terminated, start_time=開始時間,結束時間)。為了實現秒級別更新任務狀態我們可以用以下思路來實現。
1、對於已經running的任務,我們需要快速更新它的狀態,有可能已經完成了;
2、不斷獲取新的任務狀態。
我們用Mysql來記錄任務的狀態表設計如下:
CREATE TABLE `maxcompute_task` ( `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT, `instanceid` varchar(255) DEFAULT NULL comment '任務實例ID', `logview` varchar(1024) DEFAULT NULL comment 'logview鏈接,查看問題非常有用', `start_time` varchar(64) DEFAULT NULL comment '任務開始時間', `end_time` varchar(64) DEFAULT NULL comment '任務結束時間', `cast_time` varchar(32) DEFAULT NULL comment '耗時', `project_name` varchar(255) DEFAULT NULL comment '項目名', `status` varchar(64) DEFAULT NULL comment '任務狀態', PRIMARY KEY (`id`), UNIQUE KEY `instanceid` (`instanceid`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8
下麵的頁麵可以查看當前的任務耗時,開始時間,對超過1小時的任務顏色使用紅色標注,並且能查看logview,還能對任務進行取消,非常方便。
我們來看看代碼的實現:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# author: lemon
import time
import threading
import traceback
import datetime
from odps import ODPS
from dataflow import config
from libs.myconn import Cursor
from config import DBINFO_BI_MASTER
from libs import logger as _logger
g_table_name = "bi_maxcompute_task"
def save_task(instanceid, odps, mysqlconn):
# 保存任務狀態到Mysql, 分別傳入odps連接器和mysql連接器
instance = odps.get_instance(instanceid)
project_name = odps.project
status = instance.status.value
start_time = instance.start_time
end_time = instance.end_time
sql = "select logview,status from {0} where instanceid='{1}'".format(g_table_name, instanceid)
sqlret = mysqlconn.fetchone(sql)
if sqlret and sqlret["status"] == "Terminated":
return
if sqlret and sqlret["logview"] is not None:
logview = sqlret["logview"]
else:
logview = instance.get_logview_address()
start_time = start_time + datetime.timedelta(hours=8)
if status == "Running":
end_time = datetime.datetime.now()
else:
end_time = end_time + datetime.timedelta(hours=8)
cast_time = end_time - start_time
colname = "instanceid,start_time,end_time,cast_time,project_name,status,logview"
values = ",".join(["'{0}'".format(r) for r in [instanceid, str(start_time),str(end_time), cast_time, project_name, status,logview]])
sql = """replace into {0}({1}) values({2}) """.format(g_table_name, colname, values)
mysqlconn.execute(sql)
class MaxcomputeTask(threading.Thread):
# 獲取所有任務
def __init__(self, logger):
threading.Thread.__init__(self)
self.logger = logger
self.hour = 1
self.status_conf = [("demo", "Running"), ("demo", "Terminated"),
("demo1", "Running"), ("demo1","Terminated")]
def run(self):
# 建立mysql連接, 根據你的需要來使用
self.mysqlconn = Cursor.new(**DBINFO_BI_MASTER)
while True:
try:
self.start_more()
time.sleep(10)
except:
self.mysqlconn = Cursor.new(**DBINFO_BI_MASTER)
self.logger.error(traceback.format_exc())
def start_more(self,):
for params in self.status_conf:
self.get_task(*params)
def get_task(self, project_name, status):
odps = ODPS(**config.ODPS_INFO)
odps.project = project_name
list = odps.list_instances(status=status, start_time=time.time() - self.hour * 3600)
self.logger.info("start {0} {1} ".format(project_name, status))
for row in list:
save_task(instanceid=str(row), odps=odps, mysqlconn=self.mysqlconn)
self.logger.info( "end {0} {1}".format(project_name, status))
class MaxcomputeTaskRunning(threading.Thread):
# 更新running任務的狀態
def __init__(self, logger):
threading.Thread.__init__(self)
self.logger = logger
def run(self):
self.mysqlconn = Cursor.new(**DBINFO_BI_MASTER)
while True:
try:
self.update_running()
time.sleep(1)
except:
self.mysqlconn = Cursor.new(**DBINFO_BI_MASTER)
self.logger.error(traceback.format_exc())
def update_running(self):
sql = "select instanceid, project_name from {0} where status='Running'".format(g_table_name)
sqlret = self.mysqlconn.fetchall(sql)
if not sqlret:
return
self.logger.info("{1} running update length:{0}".format(len(sqlret), time.strftime("%Y-%m-%d %H:%M:%S") ))
for row in sqlret:
odps = ODPS(**config.ODPS_INFO)
odps.project = row["project_name"]
save_task(row["instanceid"], odps, self.mysqlconn)
if __name__ == "__main__":
# logger是自己編寫的日誌工具類
logger = _logger.Logger("maxcompute_task.log").getLogger()
running = MaxcomputeTaskRunning(logger)
running.setDaemon(True)
running.start()
task = MaxcomputeTask(logger)
task.start()
多任務執行
maxcompute可以在命令行下運行,也可以用SDK,阿裏雲的集成環境跑任務等。很多時候我們麵臨的任務是非常多的,如何做一個多任務的代碼執行器,也是經常遇到的問題。任務執行是一個典型的生產者和消費者的關係,生產者獲取任務,消費者執行任務。這麼做有2個好處。
1)任務執行的數量是需要可控的,如果同時運行的任務不可控勢必對服務器資源造成衝擊,
2)多機運行服務,避免單點故障,maxcompute的任務是運行在雲端的,可以通過instanceid獲取到結果,此結果是保留7天的。
我大致貼一些我們在實際場景種的一些代碼,生產者和消費者的代碼:
class Consumer(threading.Thread):
def __init__(self, queue, lock):
threading.Thread.__init__(self)
self.queue = queue
self.lock = lock
self.timeout = 1800
def run(self):
self.execute = Execute()
logger.info("consumer %s start" % threading.current_thread().name)
while G_RUN_FLAG:
try:
task = self.queue.get()
self.execute.start(task)
except:
logger.error(traceback.format_exc())
class Producter(threading.Thread):
def __init__(self, queue, lock):
threading.Thread.__init__(self)
self.queue = queue
self.lock = lock
self.sleep_time = 30
self.step_sleep_time = 5
def run(self):
self.mysqlconn_bi_master = Cursor.new(**config.DBINFO_BI_MASTER)
logger.info("producter %s start" % threading.current_thread().name)
while G_RUN_FLAG:
if self.queue.qsize() >= QUEUE_SIZE:
time.sleep(self.sleep_time)
continue
# TODO
self.queue.put(task)
time.sleep(self.step_sleep_time)
def main():
queue = Queue.LifoQueue(QUEUE_SIZE)
lock = threading.RLock()
for _ in xrange(MAX_PROCESS_NUM):
consumer = Consumer(queue, lock)
consumer.setDaemon(True)
consumer.start()
producter = Producter(queue, lock)
producter.start()
producter.join()
def signal_runflag(sig, frame):
global G_RUN_FLAG
if sig == signal.SIGHUP:
logger.info("receive HUP signal ")
G_RUN_FLAG = False
if __name__ == "__main__":
logger.info("execute run")
if platform.system() == "Linux":
signal.signal(signal.SIGHUP, signal_runflag)
main()
logger.info("execute exit.")
Maxcompute實際執行時的代碼:
def _max_compute_run(self, taskid, sql):
# 異步的方式執行
hints = {
'odps.sql.planner.mode': 'lot',
'odps.sql.ddl.odps2': 'true',
'odps.sql.preparse.odps2': 'lot',
'odps.service.mode': 'off',
'odps.task.major.version': '2dot0_demo_flighting',
'odps.sql.hive.compatible': 'true'
}
new_sql = "{0}".format(sql)
instance = self.odps.run_sql(new_sql, hints=hints)
#instance = self.odps.run_sql(sql)
# 異步的方式執行
# instance = self.odps.run_sql(sql)
self._save_task_instance_id(taskid, instance.id)
# 阻塞直到完成
instance.wait_for_success()
return instance.id
獲取結果時的代碼:
def instance_result(odps, instance_id):
# 通過instance_id 獲取結果
instance = odps.get_instance(instance_id)
response = []
with instance.open_reader() as reader:
raw_response = [r.values for r in reader]
column_names = reader._schema.names
for line in raw_response:
tmp = {}
for i in range(len(line)):
tmp[column_names[i]] = line[i]
response.append(tmp)
return response
總結:
阿裏雲的Maxcompute是非常好用的雲計算服務,它的更新和迭代速度都非常快,使用阿裏雲解放工程師的搭建基礎服務的時間,讓我們更多的專注業務,站在巨人的肩膀上聰明的幹活。
最後更新:2017-07-26 09:32:45