阅读405 返回首页    go 搜狐


上百次测试,微信红包的“规律”,控制红包尾数的可能性

楼上大多数人都是在做出自己的猜测,这也是在不知道内部随机算法的时候的唯一选择,但是大多数人没有给出自己亲自的调查结果。这里给出一份100样本的调查抽样样本数据,并提出自己的猜测。

1. 钱包钱数满足截尾正态随机数分布。大致为在截尾正态分布中取随机数,并用其求和数除以总价值,获得修正因子,再用修正因子乘上所有的随机数,得到红包价值。

这种分布意味着:低于平均值的红包多,但是离平均值不远;高于平均值的红包少,但是远大于平均值的红包偏多。

图1. 钱包价值与其频率分布直方图及其正态拟合

但看分布直方图并不能推出它符合正态分布,但是考虑到程序的简洁性和随机数的合理性,这是最合乎情理的一种猜测。

2. 越是后面的钱包,价值普遍更高

图2. 钱包序列数与其价值关系曲线

从图2中的线性拟合红线可以看到,钱包价值的总体变化趋势是在慢慢增大,其变化范围大约是一个绿色虚线上下界划出的“通道”。(曲线可以被围在这么一个正合乎常规的“通道”中,也从侧面反映了规律1的合理性,说明了并不是均匀分布的随机数)

从另一个平均数的图中也可以看出这一规律。

图3. 平均数随序列数的变化曲线

在样本中,1000价值的钱包被分成100份,均值为10。然而在图3中我们可以看到在最后一个钱包之前,平均数一直低于10,这就说明了一开始的钱包价值偏低,一直被后期的钱包价值拉着往上走,后期的钱包价值更高。

3. 当然平均数的图还可以透露出另一个规律,那就是最后的那一个人往往容易走运抽得比较多。因为最后那一个人是钱包剩下多少就拿多少的,而之前所有人的平均数都低于10,所以至少保证了最后一个人会高于平均值。在本样本中,98号钱包抽到35,而最后一份钱包抽到46。

综上,根据样本猜测:

1. 抽到的钱大多数时候跟别人一样少,但一旦一多,就容易多很多。

2. 越是抽后面的钱包,钱越容易多。

3. 最后一个人往往容易撞大运。

最后更新:2017-10-08 01:36:55

  上一篇:go 微信红包成了赌博工具:有人“开挂”一天能牟利数千
  下一篇:go 微信红包金额分配的算法,外挂软件控制扫雷尾数的可行性