RSA加密算法
RSA算法基於一個十分簡單的數論事實:將兩個大素數相乘十分容易,但那時想要對其乘積進行因式分解卻極其困難,因此可以將乘積公開作為加密密鑰。RSA算法是第一個能同時用於加密和數字簽名的算法,也易於理解和操作。
原理圖:
C# 代碼實現:
using System; using System.Collections.Generic; using System.Text; using System.Security.Cryptography; using Microsoft.Win32; using System.IO; namespace SRA { class Program { static void Main(string[] args) { string publicKeyFile = "publicKey.txt"; string privateKeyFile = "privateKey.txt"; string publicKey = string.Empty; string privateKey = string.Empty; Console.WriteLine("①創建公私鑰對:"); RSA.GenneralRSAKey(privateKeyFile, publicKeyFile); publicKey = RSA.ReadPublicKey(publicKeyFile); privateKey = RSA.ReadPrivateKey(privateKeyFile); Console.WriteLine("公鑰:" + publicKey); Console.WriteLine("私鑰:" + privateKey); string orgStr = "HelloWord"; Console.WriteLine("②使用公鑰加密字符串:"); string secStr = RSA.RSAEncrypt(publicKey, orgStr); Console.WriteLine(secStr); Console.WriteLine("③使用私鑰解密字符串:"); Console.WriteLine(SRA.RSA.RSADecrypt(privateKey, secStr)); Console.Read(); } } public class RSA { #region ①生成公私鑰對 /// <summary> /// ①生成公私鑰對 /// </summary> /// <param name="PrivateKeyPath">私鑰文件路徑</param> /// <param name="PublicKeyPath">公鑰文件路徑</param> public static void GenneralRSAKey(string PrivateKeyPath, string PublicKeyPath) { try { RSACryptoServiceProvider provider = new RSACryptoServiceProvider(); CreatePrivateKeyXML(PrivateKeyPath, provider.ToXmlString(true)); CreatePublicKeyXML(PublicKeyPath, provider.ToXmlString(false)); } catch (Exception exception) { throw exception; } } #region 創建密鑰文件 /// <summary> /// 創建公鑰文件 /// </summary> /// <param name="path"></param> /// <param name="publickey"></param> public static void CreatePublicKeyXML(string path, string publickey) { try { if (File.Exists(path)) { File.Delete(path); } FileStream publickeyxml = new FileStream(path, FileMode.Create); StreamWriter sw = new StreamWriter(publickeyxml); sw.WriteLine(publickey); sw.Close(); publickeyxml.Close(); } catch { throw; } } /// <summary> /// 創建私鑰文件 /// </summary> /// <param name="path"></param> /// <param name="privatekey"></param> public static void CreatePrivateKeyXML(string path, string privatekey) { try { if (File.Exists(path)) { File.Delete(path); } FileStream privatekeyxml = new FileStream(path, FileMode.Create); StreamWriter sw = new StreamWriter(privatekeyxml); sw.WriteLine(privatekey); sw.Close(); privatekeyxml.Close(); } catch { throw; } } #endregion #endregion #region ②讀取密鑰 /// <summary> /// 讀取公鑰 /// </summary> /// <param name="path"></param> /// <returns></returns> public static string ReadPublicKey(string path) { StreamReader reader = new StreamReader(path); string publickey = reader.ReadToEnd(); reader.Close(); return publickey; } /// <summary> /// 讀取私鑰 /// </summary> /// <param name="path"></param> /// <returns></returns> public static string ReadPrivateKey(string path) { StreamReader reader = new StreamReader(path); string privatekey = reader.ReadToEnd(); reader.Close(); return privatekey; } #endregion #region ③加密解密 /// <summary> /// RSA加密 /// </summary> /// <param name="xmlPublicKey">公鑰</param> /// <param name="m_strEncryptString">MD5加密後的數據</param> /// <returns>RSA公鑰加密後的數據</returns> public static string RSAEncrypt(string xmlPublicKey, string m_strEncryptString) { string str2; try { RSACryptoServiceProvider provider = new RSACryptoServiceProvider(); provider.FromXmlString(xmlPublicKey); byte[] bytes = new UnicodeEncoding().GetBytes(m_strEncryptString); str2 = Convert.ToBase64String(provider.Encrypt(bytes, false)); } catch (Exception exception) { throw exception; } return str2; } /// <summary> /// RSA解密 /// </summary> /// <param name="xmlPrivateKey">私鑰</param> /// <param name="m_strDecryptString">待解密的數據</param> /// <returns>解密後的結果</returns> public static string RSADecrypt(string xmlPrivateKey, string m_strDecryptString) { string str2; try { RSACryptoServiceProvider provider = new RSACryptoServiceProvider(); provider.FromXmlString(xmlPrivateKey); byte[] rgb = Convert.FromBase64String(m_strDecryptString); byte[] buffer2 = provider.Decrypt(rgb, false); str2 = new UnicodeEncoding().GetString(buffer2); } catch (Exception exception) { throw exception; } return str2; } #endregion } }
算法介紹:
算法的名字以發明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman。早在1973年,英國國家通信總局的數學家Clifford Cocks就發現了類似的算法。但是他的發現被列為絕密,直到1998年才公諸於世。
RSA算法是一種非對稱密碼算法,所謂非對稱,就是指該算法需要一對密鑰,使用其中一個加密,則需要用另一個才能解密。
RSA的算法涉及三個參數,n、e1、e2。
其中,n是兩個大質數p、q的積,n的二進製表示時所占用的位數,就是所謂的密鑰長度。
e1和e2是一對相關的值,e1可以任意取,但要求e1與(p-1)*(q-1)互質;再選擇e2,要求(e2*e1)mod((p-1)*(q-1))=1。
(n及e1),(n及e2)就是密鑰對。
RSA加解密的算法完全相同,設A為明文,B為密文,則:A=B^e1 mod n;B=A^e2 mod n;
e1和e2可以互換使用,即:A=B^e2 mod n;B=A^e1 mod n;
最後更新:2017-04-02 06:51:55