閱讀560 返回首頁    go 阿裏雲 go 技術社區[雲棲]


Java並發包中的同步隊列SynchronousQueue實現原理

介紹

Java 6的並發編程包中的SynchronousQueue是一個沒有數據緩衝的BlockingQueue,生產者線程對其的插入操作put必須等待消費者的移除操作take,反過來也一樣。

不像ArrayBlockingQueue或LinkedListBlockingQueue,SynchronousQueue內部並沒有數據緩 存空間,你不能調用peek()方法來看隊列中是否有數據元素,因為數據元素隻有當你試著取走的時候才可能存在,不取走而隻想偷窺一下是不行的,當然遍曆 這個隊列的操作也是不允許的。隊列頭元素是第一個排隊要插入數據的線程,而不是要交換的數據。數據是在配對的生產者和消費者線程之間直接傳遞的,並不會將數據緩衝數據到隊列中。可以這樣來理解:生產者和消費者互相等待對方,握手,然後一起離開。

SynchronousQueue的一個使用場景是在線程池裏。Executors.newCachedThreadPool()就使用了 SynchronousQueue,這個線程池根據需要(新任務到來時)創建新的線程,如果有空閑線程則會重複使用,線程空閑了60秒後會被回收。

實現原理

阻塞隊列的實現方法有許多:

阻塞算法實現

阻塞算法實現通常在內部采用一個鎖來保證多個線程中的put()和take()方法是串行執行的。采用鎖的開銷是比較大的,還會存在一種情況是線程 A持有線程B需要的鎖,B必須一直等待A釋放鎖,即使A可能一段時間內因為B的優先級比較高而得不到時間片運行。所以在高性能的應用中我們常常希望規避鎖 的使用。

public class NativeSynchronousQueue<E> {
    boolean putting = false;
    E item = null;

    public synchronized E take() throws InterruptedException {
        while (item == null)
            wait();
        E e = item;
        item = null;
        notifyAll();
        return e;
    }

    public synchronized void put(E e) throws InterruptedException {
        if (e==null) return;
        while (putting)
            wait();
        putting = true;
        item = e;
        notifyAll();
        while (item!=null)
            wait();
        putting = false;
        notifyAll();
    }
}

信號量實現

經典同步隊列實現采用了三個信號量,代碼很簡單,比較容易理解:

public class SemaphoreSynchronousQueue<E> {
    E item = null;
    Semaphore sync = new Semaphore(0);
    Semaphore send = new Semaphore(1);
    Semaphore recv = new Semaphore(0);

    public E take() throws InterruptedException {
        recv.acquire();
        E x = item;
        sync.release();
        send.release();
        return x;
    }

    public void put (E x) throws InterruptedException{
        send.acquire();
        item = x;
        recv.release();
        sync.acquire();
    }
}

在多核機器上,上麵方法的同步代價仍然較高,操作係統調度器需要上千個時間片來阻塞或喚醒線程,而上麵的實現即使在生產者put()時已經有一個消費者在等待的情況下,阻塞和喚醒的調用仍然需要。

Java 5實現

public class Java5SynchronousQueue<E> {
    ReentrantLock qlock = new ReentrantLock();
    Queue waitingProducers = new Queue();
    Queue waitingConsumers = new Queue();

    static class Node extends AbstractQueuedSynchronizer {
        E item;
        Node next;

        Node(Object x) { item = x; }
        void waitForTake() { /* (uses AQS) */ }
           E waitForPut() { /* (uses AQS) */ }
    }

    public E take() {
        Node node;
        boolean mustWait;
        qlock.lock();
        node = waitingProducers.pop();
        if(mustWait = (node == null))
           node = waitingConsumers.push(null);
         qlock.unlock();

        if (mustWait)
           return node.waitForPut();
        else
            return node.item;
    }

    public void put(E e) {
         Node node;
         boolean mustWait;
         qlock.lock();
         node = waitingConsumers.pop();
         if (mustWait = (node == null))
             node = waitingProducers.push(e);
         qlock.unlock();

         if (mustWait)
             node.waitForTake();
         else
            node.item = e;
    }
}

Java 5的實現相對來說做了一些優化,隻使用了一個鎖,使用隊列代替信號量也可以允許發布者直接發布數據,而不是要首先從阻塞在信號量處被喚醒。

Java6實現

Java 6的SynchronousQueue的實現采用了一種性能更好的無鎖算法 — 擴展的“Dual stack and Dual queue” 算法。性能比Java5的實現有較大提升。競爭機製支持公平和非公平兩種:非公平競爭模式使用的數據結構是後進先出棧(Lifo Stack);公平競爭模式則使用先進先出隊列(Fifo Queue),性能上兩者是相當的,一般情況下,Fifo通常可以支持更大的吞吐量,但Lifo可以更大程度的保持線程的本地化。

代碼實現裏的Dual Queue或Stack內部是用鏈表(LinkedList)來實現的,其節點狀態為以下三種情況:

  1. 持有數據 – put()方法的元素
  2. 持有請求 – take()方法

這個算法的特點就是任何操作都可以根據節點的狀態判斷執行,而不需要用到鎖。

其核心接口是Transfer,生產者的put或消費者的take都使用這個接口,根據第一個參數來區別是入列(棧)還是出列(棧)。

 /**
     * Shared internal API for dual stacks and queues.
     */
    static abstract class Transferer {
        /**
         * Performs a put or take.
         *
         * @param e if non-null, the item to be handed to a consumer;
         *          if null, requests that transfer return an item
         *          offered by producer.
         * @param timed if this operation should timeout
         * @param nanos the timeout, in nanoseconds
         * @return if non-null, the item provided or received; if null,
         *         the operation failed due to timeout or interrupt --
         *         the caller can distinguish which of these occurred
         *         by checking Thread.interrupted.
         */
        abstract Object transfer(Object e, boolean timed, long nanos);
    }

TransferQueue實現如下(摘自Java 6源代碼),入列和出列都基於Spin和CAS方法:

/** * Puts or takes an item. */ Object transfer(Object e, boolean timed, long nanos) { /* Basic algorithm is to loop trying to take either of * two actions: * * 1. If queue apparently empty or holding same-mode nodes, * try to add node to queue of waiters, wait to be * fulfilled (or cancelled) and return matching item. * * 2. If queue apparently contains waiting items, and this * call is of complementary mode, try to fulfill by CAS'ing * item field of waiting node and dequeuing it, and then * returning matching item. * * In each case, along the way, check for and try to help * advance head and tail on behalf of other stalled/slow * threads. * * The loop starts off with a null check guarding against * seeing uninitialized head or tail values. This never * happens in current SynchronousQueue, but could if * callers held non-volatile/final ref to the * transferer. The check is here anyway because it places * null checks at top of loop, which is usually faster * than having them implicitly interspersed. */ QNode s = null; // constructed/reused as needed boolean isData = (e != null); for (;;) { QNode t = tail; QNode h = head; if (t == null || h == null) // saw uninitialized value continue; // spin if (h == t || t.isData == isData) { // empty or same-mode QNode tn = t.next; if (t != tail) // inconsistent read continue; if (tn != null) { // lagging tail advanceTail(t, tn); continue; } if (timed &amp;&amp; nanos &lt;= 0) // can't wait return null; if (s == null) s = new QNode(e, isData); if (!t.casNext(null, s)) // failed to link in continue; advanceTail(t, s); // swing tail and wait Object x = awaitFulfill(s, e, timed, nanos); if (x == s) { // wait was cancelled clean(t, s); return null; } if (!s.isOffList()) { // not already unlinked advanceHead(t, s); // unlink if head if (x != null) // and forget fields s.item = s; s.waiter = null; } return (x != null)? x : e; } else { // complementary-mode QNode m = h.next; // node to fulfill if (t != tail || m == null || h != head) continue; // inconsistent read Object x = m.item; if (isData == (x != null) || // m already fulfilled x == m || // m cancelled !m.casItem(x, e)) { // lost CAS advanceHead(h, m); // dequeue and retry continue; } advanceHead(h, m); // successfully fulfilled LockSupport.unpark(m.waiter); return (x != null)? x : e; } } }


文章轉自 並發編程網-ifeve.com

最後更新:2017-05-22 20:04:52

  上一篇:go  Java中的讀/寫鎖
  下一篇:go  深入理解Java內存模型(五)——鎖