閱讀228 返回首頁    go 阿裏雲 go 技術社區[雲棲]


spark源碼分析之任務調度篇

DAG的生成

概述

DAG(Directed Acyclic Graph)叫做有向無環圖,原始的RDD通過一係列的轉換就就形成了DAG,根據RDD之間的依賴關係的不同將DAG劃分成不同的Stage,對於窄依賴,partition的轉換處理在Stage中完成計算。對於寬依賴,由於有Shuffle的存在,隻能在parent RDD處理完成後,才能開始接下來的計算,因此寬依賴是劃分Stage的依據。

窄依賴 指的是每一個父RDD的Partition最多被子RDD的一個Partition使用
寬依賴 指的是多個子RDD的Partition會依賴同一個父RDD的Partition

DAGScheduler調度隊列

當我們看完Executor的創建與啟動流程後,我們繼續在SparkContext的構造方法中繼續查看

class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationClient {
  。。。。。。

 private[spark] def createSparkEnv(
      conf: SparkConf,
      isLocal: Boolean,
      listenerBus: LiveListenerBus): SparkEnv = {
    //通過SparkEnv來創建createDriverEnv
    SparkEnv.createDriverEnv(conf, isLocal, listenerBus)
  }
  //在這裏調用了createSparkEnv,返回一個SparkEnv對象,這個對象裏麵有很多重要屬性,最重要的ActorSystem
  private[spark] val env = createSparkEnv(conf, isLocal, listenerBus)
  SparkEnv.set(env)


  //創建taskScheduler
  // Create and start the scheduler
  private[spark] var (schedulerBackend, taskScheduler) =
    SparkContext.createTaskScheduler(this, master)

  //創建DAGScheduler
  dagScheduler = new DAGScheduler(this)

  //啟動TaksScheduler
  taskScheduler.start()
    。。。。。
}

在構造方法中還創建了一個DAGScheduler對象,這個類的任務就是用來劃分Stage任務的,構造方法中初始化了 private[scheduler] val eventProcessLoop = new DAGSchedulerEventProcessLoop(this)
DAGSchedulerEventProcessLoop是一個事件總線對象,用來負責任務的分發,在構造方法eventProcessLoop.start()被調用,該方法是父類EventLoop的start

  def start(): Unit = {
    if (stopped.get) {
      throw new IllegalStateException(name + " has already been stopped")
    }
    // Call onStart before starting the event thread to make sure it happens before onReceive
    onStart()
    eventThread.start()
  }

調用了eventThread的start方法,開啟了一個線程

  private val eventThread = new Thread(name) {
    setDaemon(true)

    override def run(): Unit = {
      try {
        while (!stopped.get) {
          val event = eventQueue.take()
          try {
            onReceive(event)
          } catch {
            case NonFatal(e) => {
              try {
                onError(e)
              } catch {
                case NonFatal(e) => logError("Unexpected error in " + name, e)
              }
            }
          }
        }
      } catch {
        case ie: InterruptedException => // exit even if eventQueue is not empty
        case NonFatal(e) => logError("Unexpected error in " + name, e)
      }
    }
  }

run方法中不斷的從LinkedBlockingDeque阻塞隊列中取消息,然後調用onReceive(event)方法,該方法是由子類DAGSchedulerEventProcessLoop實現的

  override def onReceive(event: DAGSchedulerEvent): Unit = event match {
    case JobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite, listener, properties) =>
      //調用dagScheduler來出來提交任務
      dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite,
        listener, properties)

    case StageCancelled(stageId) =>
      dagScheduler.handleStageCancellation(stageId)

    case JobCancelled(jobId) =>
      dagScheduler.handleJobCancellation(jobId)

    case JobGroupCancelled(groupId) =>
      dagScheduler.handleJobGroupCancelled(groupId)

    case AllJobsCancelled =>
      dagScheduler.doCancelAllJobs()

    case ExecutorAdded(execId, host) =>
      dagScheduler.handleExecutorAdded(execId, host)

    case ExecutorLost(execId) =>
      dagScheduler.handleExecutorLost(execId, fetchFailed = false)

    case BeginEvent(task, taskInfo) =>
      dagScheduler.handleBeginEvent(task, taskInfo)

    case GettingResultEvent(taskInfo) =>
      dagScheduler.handleGetTaskResult(taskInfo)

    case completion @ CompletionEvent(task, reason, _, _, taskInfo, taskMetrics) =>
      dagScheduler.handleTaskCompletion(completion)

    case TaskSetFailed(taskSet, reason) =>
      dagScheduler.handleTaskSetFailed(taskSet, reason)

    case ResubmitFailedStages =>
      dagScheduler.resubmitFailedStages()
  }

onReceive中會匹配到傳入的任務類型,執行相應的邏輯。到此DAGScheduler的調度隊列會一直掛起,不斷輪詢隊列中的任務。

DAG提交Task任務流程

當RDD經過一係列的轉換Transformation方法後,最終要執行Action動作方法,這裏比如WordCount程序中最後調用collect()方法時會將數據提交到Master上運行,任務真正的被執行,這裏的方法執行過程如下

  /**
   * Return an array that contains all of the elements in this RDD.
   */
  def collect(): Array[T] = {
    val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)
    Array.concat(results: _*)
  }

sc 是SparkContext對象,這裏調用 一個runJob該方法調用多次重載的方法後,該方法最終會調用 dagScheduler.runJob

  def runJob[T, U: ClassTag](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      allowLocal: Boolean,
      resultHandler: (Int, U) => Unit) {
    if (stopped) {
      throw new IllegalStateException("SparkContext has been shutdown")
    }
    val callSite = getCallSite
    val cleanedFunc = clean(func)
    logInfo("Starting job: " + callSite.shortForm)
    if (conf.getBoolean("spark.logLineage", false)) {
      logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
    }
    //dagScheduler出現了,可以切分stage
    dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, allowLocal,
      resultHandler, localProperties.get)
    progressBar.foreach(_.finishAll())
    rdd.doCheckpoint()
  }

dagScheduler的runJob是我們比較關心的

 def runJob[T, U: ClassTag](

    。。。。。

    val waiter = submitJob(rdd, func, partitions, callSite, allowLocal, resultHandler, properties)
    waiter.awaitResult() match {
      case JobSucceeded => {
        logInfo("Job %d finished: %s, took %f s".format
          (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
      }
      case JobFailed(exception: Exception) =>
        logInfo("Job %d failed: %s, took %f s".format
          (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
        throw exception
    }
  }

這裏麵的我們主要看的是submitJob(rdd, func, partitions, callSite, allowLocal, resultHandler, properties)提交任務

def submitJob[T, U](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: CallSite,
      allowLocal: Boolean,
      resultHandler: (Int, U) => Unit,
      properties: Properties): JobWaiter[U] = {

     。。。。。。

    //把job加入到任務隊列裏麵
    eventProcessLoop.post(JobSubmitted(
      jobId, rdd, func2, partitions.toArray, allowLocal, callSite, waiter, properties))
    waiter
  }

這裏比較關鍵的地方是eventProcessLoop.post往任務隊列中加入一個JobSubmitted類型的任務,eventProcessLoop是在構造方法中就初始化好的事件總線對象,內部有一個線程不斷的輪詢隊列裏的任務

輪詢到任務後調用onReceive方法匹配任務類型,在這裏我們提交的任務是JobSubmitted類型

    case JobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite, listener, properties) =>
      //調用dagScheduler來出來提交任務
      dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite,
        listener, properties)

調用了handleJobSubmitted方法,接下來查看該方法

private[scheduler] def handleJobSubmitted(jobId: Int,
      finalRDD: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Array[Int],
      allowLocal: Boolean,
      callSite: CallSite,
      listener: JobListener,
      properties: Properties) {
    var finalStage: Stage = null
    try {
      // New stage creation may throw an exception if, for example, jobs are run on a
      // HadoopRDD whose underlying HDFS files have been deleted.
      //最終的stage
      finalStage = newStage(finalRDD, partitions.size, None, jobId, callSite)
    } catch {
      case e: Exception =>
        logWarning("Creating new stage failed due to exception - job: " + jobId, e)
        listener.jobFailed(e)
        return
    }
        。。。。
        submitStage(finalStage)
   }

上麵的代碼中,調用了newStage進行任務的劃分,該方法是劃分任務的核心方法,劃分任務的根據最後一個依賴關係作為開始,通過遞歸,將每個寬依賴做為切分Stage的依據,切分Stage的過程是流程中的一環,但在這裏不詳細闡述,當任務切分完畢後,代碼繼續執行來到submitStage(finalStage)這裏開始進行任務提交
這裏以遞歸的方式進行任務的提交

//遞歸的方式提交stage
  private def submitStage(stage: Stage) {
    val jobId = activeJobForStage(stage)
    if (jobId.isDefined) {
      logDebug("submitStage(" + stage + ")")
      if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
        val missing = getMissingParentStages(stage).sortBy(_.id)
        logDebug("missing: " + missing)
        if (missing == Nil) {
          logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
            //提交任務
          submitMissingTasks(stage, jobId.get)
        } else {
          for (parent <- missing) {
            submitStage(parent)
          }
          waitingStages += stage
        }
      }
    } else {
      abortStage(stage, "No active job for stage " + stage.id)
    }
  }

調用submitMissingTasks(stage, jobId.get)提交任務,將每一個Stage和jobId傳入

  private def submitMissingTasks(stage: Stage, jobId: Int) {
   。。。。。

    if (tasks.size > 0) {
      logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")")
      stage.pendingTasks ++= tasks
      logDebug("New pending tasks: " + stage.pendingTasks)
      //taskScheduler提交task
      taskScheduler.submitTasks(
        new TaskSet(tasks.toArray, stage.id, stage.newAttemptId(), stage.jobId, properties))
      stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
    } else {
      // Because we posted SparkListenerStageSubmitted earlier, we should mark
      // the stage as completed here in case there are no tasks to run
      markStageAsFinished(stage, None)
      logDebug("Stage " + stage + " is actually done; %b %d %d".format(
        stage.isAvailable, stage.numAvailableOutputs, stage.numPartitions))
    }
  }

這裏的代碼我們需要關注的是taskScheduler.submitTasks(
new TaskSet(tasks.toArray, stage.id, stage.newAttemptId(), stage.jobId, properties))

創建了一個TaskSet對象,將所有任務的信息封裝,包括task任務列表,stageId,任務id,分區數參數等

Task任務調度

override def submitTasks(taskSet: TaskSet) {
    val tasks = taskSet.tasks
    logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
    this.synchronized {
        //創建TaskSetManager保存了taskSet任務列表
      val manager = createTaskSetManager(taskSet, maxTaskFailures)
      activeTaskSets(taskSet.id) = manager
     //將任務加入調度池
      schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)

      if (!isLocal && !hasReceivedTask) {
        starvationTimer.scheduleAtFixedRate(new TimerTask() {
          override def run() {
            if (!hasLaunchedTask) {
              logWarning("Initial job has not accepted any resources; " +
                "check your cluster UI to ensure that workers are registered " +
                "and have sufficient resources")
            } else {
              this.cancel()
            }
          }
        }, STARVATION_TIMEOUT, STARVATION_TIMEOUT)
      }
      hasReceivedTask = true
    }
    //接受任務
    backend.reviveOffers()
  }

該方法比較重要,主要將任務加入調度池,最後調用了backend.reviveOffers()這裏的backend是CoarseGrainedSchedulerBackend一個Executor任務調度對象

  override def reviveOffers() {
    //自己給自己發消息
    driverActor ! ReviveOffers
  }

這裏用了內部的DriverActor對象發送了一個內部消息給自己,接下來查看receiver方法接受的消息

      case ReviveOffers =>
        makeOffers()

收到消息後調用了makeOffers()方法

    def makeOffers() {
      launchTasks(scheduler.resourceOffers(executorDataMap.map { case (id, executorData) =>
        new WorkerOffer(id, executorData.executorHost, executorData.freeCores)
      }.toSeq))
    }

makeOffers方法中,將Executor的信息集合與調度池中的Tasks封裝成WokerOffers列表傳給了
launchTasks

    def launchTasks(tasks: Seq[Seq[TaskDescription]]) {
      for (task <- tasks.flatten) {
        。。。。。。
        //把task序列化
        val serializedTask = ser.serialize(task)

            。。。。。
          val executorData = executorDataMap(task.executorId)
          executorData.freeCores -= scheduler.CPUS_PER_TASK
          //把序列化好的task發送給Executor
          executorData.executorActor ! LaunchTask(new SerializableBuffer(serializedTask))
        }
      }
    }

launchTasks方法將遍曆Tasks集合,每個Task任務序列化,發送啟動Task執行消息的給Executor
Executor的onReceive方法

  //DriverActor發送給Executor的啟動Task的消息
    case LaunchTask(data) =>
      if (executor == null) {
        logError("Received LaunchTask command but executor was null")
        System.exit(1)
      } else {
        val ser = env.closureSerializer.newInstance()
        //把Task反序列化
        val taskDesc = ser.deserialize[TaskDescription](data.value)
        logInfo("Got assigned task " + taskDesc.taskId)
        //啟動task
        executor.launchTask(this, taskId = taskDesc.taskId, attemptNumber = taskDesc.attemptNumber,
          taskDesc.name, taskDesc.serializedTask)
      }

Executor收到DriverActor發送的啟動Task的消息,這裏才開始真正執行任務了,將收到的Task序列化信息反序列化,調用ExecutorlaunchTask方法執行任務

  def launchTask(
      context: ExecutorBackend,
      taskId: Long,
      attemptNumber: Int,
      taskName: String,
      serializedTask: ByteBuffer) {
    //把task的描述信息放到了一份TaskRunner
    val tr = new TaskRunner(context, taskId = taskId, attemptNumber = attemptNumber, taskName,
      serializedTask)
    runningTasks.put(taskId, tr)
    //然後把TaskRunner丟到線程池裏麵
    threadPool.execute(tr)
  }

launchTask內將Task提交到線程池去運行,TaskRunner是Runnable對象,裏麵的run方法執行了我們app生成的每一個RDD的鏈上的邏輯。

最後更新:2017-05-01 08:01:17

  上一篇:go spark源碼分析之Checkpoint的過程
  下一篇:go spark源碼分析之Executor啟動與任務提交篇