閱讀308 返回首頁    go 技術社區[雲棲]


Triangular Sums

Triangular Sums

時間限製:3000 ms  |  內存限製:65535 KB
難度:2
描述

The nth Triangular number, T(n) = 1 + … + n, is the sum of the first n integers. It is the number of points in a triangular array with n points on side. For example T(4):

X
X X
X X X
X X X X

Write a program to compute the weighted sum of triangular numbers:

W(n) = SUM[k = 1…nk * T(k + 1)]

輸入
The first line of input contains a single integer N, (1 ≤ N ≤ 1000) which is the number of datasets that follow.

Each dataset consists of a single line of input containing a single integer n, (1 ≤ n ≤300), which is the number of points on a side of the triangle.
輸出
For each dataset, output on a single line the dataset number (1 through N), a blank, the value of n for the dataset, a blank, and the weighted sum ,W(n), of triangular numbers for n.
樣例輸入
4
3
4
5
10
樣例輸出
1 3 45
2 4 105
3 5 210
4 10 2145
01.#include <iostream>
02.using namespace std;
03. 
04.int main()
05.{
06.int testNum;
07.cin >> testNum;
08. 
09.for (int sample = 1; sample <= testNum; sample++)
10.{
11.long w = 0;
12.int n;
13.cin >> n;
14.for (int k = 1; k <= n; k++)
15.{
16.//等差公式
17.w += k * ((1+(k+1)) * (k+1) / 2);
18.}
19.cout << sample << " " << n << " " << w << endl;
20.}
21. 
22.return 0;
23.}

最後更新:2017-04-03 05:40:23

  上一篇:go J2EE中自定義標簽以及TagSupport和BodyTagSupport的用法
  下一篇:go Oracle中的nvl函數