閱讀558 返回首頁    go 技術社區[雲棲]


HTAP數據庫 PostgreSQL 場景與性能測試之 16 - (OLTP) 文本特征向量 - 相似特征(海明...)查詢

標簽

PostgreSQL , HTAP , OLTP , OLAP , 場景與性能測試


背景

PostgreSQL是一個曆史悠久的數據庫,曆史可以追溯到1973年,最早由2014計算機圖靈獎得主,關係數據庫的鼻祖Michael_Stonebraker 操刀設計,PostgreSQL具備與Oracle類似的功能、性能、架構以及穩定性。

pic

PostgreSQL社區的貢獻者眾多,來自全球各個行業,曆經數年,PostgreSQL 每年發布一個大版本,以持久的生命力和穩定性著稱。

2017年10月,PostgreSQL 推出10 版本,攜帶諸多驚天特性,目標是勝任OLAP和OLTP的HTAP混合場景的需求:

《最受開發者歡迎的HTAP數據庫PostgreSQL 10特性》

1、多核並行增強

2、fdw 聚合下推

3、邏輯訂閱

4、分區

5、金融級多副本

6、json、jsonb全文檢索

7、還有插件化形式存在的特性,如 向量計算、JIT、SQL圖計算、SQL流計算、分布式並行計算、時序處理、基因測序、化學分析、圖像分析 等。

pic

在各種應用場景中都可以看到PostgreSQL的應用:

pic

PostgreSQL近年來的發展非常迅勐,從知名數據庫評測網站dbranking的數據庫評分趨勢,可以看到PostgreSQL向上發展的趨勢:

pic

從每年PostgreSQL中國召開的社區會議,也能看到同樣的趨勢,參與的公司越來越多,分享的公司越來越多,分享的主題越來越豐富,橫跨了 傳統企業、互聯網、醫療、金融、國企、物流、電商、社交、車聯網、共享XX、雲、遊戲、公共交通、航空、鐵路、軍工、培訓、谘詢服務等 行業。

接下來的一係列文章,將給大家介紹PostgreSQL的各種應用場景以及對應的性能指標。

環境

環境部署方法參考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(適合新用戶)》

阿裏雲 ECS:56核,224G,1.5TB*2 SSD雲盤

操作係統:CentOS 7.4 x64

數據庫版本:PostgreSQL 10

PS:ECS的CPU和IO性能相比物理機會打一定的折扣,可以按下降1倍性能來估算。跑物理主機可以按這裏測試的性能乘以2來估算。

場景 - 文本特征向量 - 相似特征(海明...)查詢 (OLTP)

1、背景

對於長文本來說、或者一些較長文本來說,如果要搜索語義相似的文本,使用全文檢索、模煳查詢都不太合適,無法滿足需求。

通常的做法是提取文本的特征詞,根據特征來搜索相似的文本。

比如求不同文本之間的海明距離,得到的距離越近,越相似。

《海量數據,海明(simhash)距離高效檢索(smlar) - 阿裏雲RDS PosgreSQL最佳實踐》

2、設計

1億條文本特征向量的海明碼,輸入任意海明碼,求與之相似的記錄。

1億個海明碼,搜索與指定海明碼的距離在3以內的記錄。

3、準備測試表

create extension smlar;  
  
create table hm3 (id int, hmval bit(64), hmarr text[]);  

4、準備測試函數(可選)

生成隨機海明碼的函數

create or replace function gen_rand_bit() returns bit(64) as $$  
  select (sqrt(random())::numeric*9223372036854775807*2-9223372036854775807::numeric)::int8::bit(64);  
$$ language sql strict;  
  
create or replace function gen_arr(text) returns text[] as $$  
  select regexp_split_to_array('1_'||substring($1,1,16)||',2_'||substring($1,17,16)||',3_'||substring($1,33,16)||',4_'||substring($1,41,16), ',') ;  
$$ language sql strict;  

測試搜索與指定海明碼的距離在3以內的記錄的函數

create or replace function f_test () returns setof record as $$  
declare  
  ts text;  
  arr text[];  
begin  
  set smlar.type = overlap;  
  set smlar.threshold = 3;  
  set LOCAL enable_seqscan=off;  
  
  select gen_rand_bit()::text into ts;  
  select gen_arr(ts) into arr;  
  return query select  
    *,  
    smlar( hmarr, arr)  
  from  
    hm3  
  where  
    hmarr % arr  
    and length(replace(bitxor(ts::bit(64), hmval)::text,'0','')) < 2  
  limit 1;  
end;  
$$ language plpgsql strict;  

5、準備測試數據

insert into hm3  
select  
  id,  
  val::bit(64),  
  regexp_split_to_array('1_'||substring(val,1,16)||',2_'||substring(val,17,16)||',3_'||substring(val,33,16)||',4_'||substring(val,41,16), ',')  
from  
(select id, (sqrt(random())::numeric*9223372036854775807*2-9223372036854775807::numeric)::int8::bit(64)::text as val from generate_series(1,100000000) t(id)) t;  
  
create index idx_hm3 on hm3 using gin(hmarr _text_sml_ops );  

6、準備測試腳本

vi test.sql  
  
select * from f_test() as t(id int, hmval bit(64), hmarr text[], dist real);  

7、測試

單次相似查詢效率,響應時間低於 2 毫秒。(使用綁定變量、並且CACHE命中後,響應時間更低。)

select  
    *,  
    smlar( hmarr, '{1_0000000010010010,2_1100110110010100,3_1101110100011011,4_0001101111111111}'::text[])  
  from  
    hm3  
  where  
    hmarr % '{1_0000000010010010,2_1100110110010100,3_1101110100011011,4_0001101111111111}'::text[]  
    and length(replace(bitxor('0000000010010010110011011001010011011101000110111111111001111111'::bit(64), hmval)::text,'0','')) < 2  
  limit 1;  
  
 id |                              hmval                               |                                     hmarr                                     | smlar  
----+------------------------------------------------------------------+-------------------------------------------------------------------------------+-------  
  1 | 0000000010010010110011011001010011011101000110111111111001111110 | {1_0000000010010010,2_1100110110010100,3_1101110100011011,4_0001101111111110} |     3  
(1 row)  
  
Time: 1.335 ms  
  
postgres=# explain (analyze,verbose,timing,costs,buffers) select  
    *,  
    smlar( hmarr, '{1_0000000010010010,2_1100110110010100,3_1101110100011011,4_0001101111111111}'::text[])  
  from  
    hm3  
  where  
    hmarr % '{1_0000000010010010,2_1100110110010100,3_1101110100011011,4_0001101111111111}'::text[]  
    and length(replace(bitxor('0000000010010010110011011001010011011101000110111111111001111111'::bit(64), hmval)::text,'0','')) < 2  
  limit 1;  
                                                                             QUERY PLAN  
---------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Limit  (cost=811.33..814.35 rows=1 width=138) (actual time=0.563..0.563 rows=1 loops=1)  
   Output: id, hmval, hmarr, (smlar(hmarr, '{1_0000000010010010,2_1100110110010100,3_1101110100011011,4_0001101111111111}'::text[]))  
   Buffers: shared hit=19  
   ->  Bitmap Heap Scan on public.hm3  (cost=811.33..101253.67 rows=33333 width=138) (actual time=0.561..0.561 rows=1 loops=1)  
         Output: id, hmval, hmarr, smlar(hmarr, '{1_0000000010010010,2_1100110110010100,3_1101110100011011,4_0001101111111111}'::text[])  
         Recheck Cond: (hm3.hmarr % '{1_0000000010010010,2_1100110110010100,3_1101110100011011,4_0001101111111111}'::text[])  
         Filter: (length(replace((bitxor(B'0000000010010010110011011001010011011101000110111111111001111111'::bit(64), hm3.hmval))::text, '0'::text, ''::text)) < 2)  
         Heap Blocks: exact=1  
         Buffers: shared hit=19  
         ->  Bitmap Index Scan on idx_hm3  (cost=0.00..803.00 rows=100000 width=0) (actual time=0.538..0.538 rows=1 loops=1)  
               Index Cond: (hm3.hmarr % '{1_0000000010010010,2_1100110110010100,3_1101110100011011,4_0001101111111111}'::text[])  
               Buffers: shared hit=18  
 Planning time: 0.134 ms  
 Execution time: 0.602 ms  
(14 rows)  
  
Time: 1.269 ms  

壓測

CONNECTS=56  
TIMES=300  
export PGHOST=$PGDATA  
export PGPORT=1999  
export PGUSER=postgres  
export PGPASSWORD=postgres  
export PGDATABASE=postgres  
  
pgbench -M prepared -n -r -f ./test.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES  

8、測試結果

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 56  
number of threads: 56  
duration: 300 s  
number of transactions actually processed: 14721374  
latency average = 1.140 ms  
latency stddev = 0.590 ms  
tps = 49053.614018 (including connections establishing)  
tps = 49054.615079 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         1.139  select * from f_test() as t(id int, hmval bit(64), hmarr text[], dist real);  

TPS: 49054

平均響應時間: 1.140 毫秒

參考

《PostgreSQL、Greenplum 應用案例寶典《如來神掌》 - 目錄》

《數據庫選型之 - 大象十八摸 - 致 架構師、開發者》

《PostgreSQL 使用 pgbench 測試 sysbench 相關case》

《數據庫界的華山論劍 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

最後更新:2017-11-12 02:05:50

  上一篇:go  HTAP數據庫 PostgreSQL 場景與性能測試之 17 - (OLTP) 數組相似查詢
  下一篇:go  HTAP數據庫 PostgreSQL 場景與性能測試之 15 - (OLTP) 物聯網 - 查詢一個時序區間的數據