閱讀312 返回首頁    go Python


Python爬蟲常用技巧總結

1、基本抓取網頁

get方法

importurllib2

respons=urllib2.urlopen(url)

printresponse.read()

post方法

importurllib

importurllib2

url="https://abcde.com"

form={ name : abc , password : 1234 }

form_data=urllib.urlencode(form)

request=urllib2.Request(url,form_data)

response=urllib2.urlopen(request)

printresponse.read()

2、使用代理IP

在開發爬蟲過程中經常會遇到IP被封掉的情況,這時就需要用到代理IP;

在urllib2包中有ProxyHandler類,通過此類可以設置代理訪問網頁,如下代碼片段:

importurllib2

proxy=urllib2.ProxyHandler({ http : 127.0.0.1:8087 })

opener=urllib2.build_opener(proxy)

urllib2.install_opener(opener)

printresponse.read()

3、Cookies處理

cookies是某些網站為了辨別用戶身份、進行session跟蹤而儲存在用戶本地終端上的數據(通常經過加密),python提供了cookielib模塊用於處理cookies,cookielib模塊的主要作用是提供可存儲cookie的對象,以便於與urllib2模塊配合使用來訪問Internet資源.

代碼片段:

importurllib2,cookielib

cookie_support=urllib2.HTTPCookieProcessor(cookielib.CookieJar())

opener=urllib2.build_opener(cookie_support)

urllib2.install_opener(opener)

content=urllib2.urlopen( https://XXXX ).read()

關鍵在於CookieJar(),它用於管理HTTP cookie值、存儲HTTP請求生成的cookie、向傳出的HTTP請求添加cookie的對象。整個cookie都存儲在內存中,對CookieJar實例進行垃圾回收後cookie也將丟失,所有過程都不需要單獨去操作。

手動添加cookie

cookie="PHPSESSID=91rurfqm2329bopnosfu4fvmu7; kmsign=55d2c12c9b1e3; KMUID=b6Ejc1XSwPq9o756AxnBAg="

request.add_header("Cookie",cookie)

4、偽裝成瀏覽器

某些網站反感爬蟲的到訪,於是對爬蟲一律拒絕請求。所以用urllib2直接訪問網站經常會出現HTTP Error 403: Forbidden的情況

對有些 header 要特別留意,Server 端會針對這些 header 做檢查

1.User-Agent 有些 Server 或 Proxy 會檢查該值,用來判斷是否是瀏覽器發起的 Request

2.Content-Type 在使用 REST 接口時,Server 會檢查該值,用來確定 HTTP Body 中的內容該怎樣解析。

這時可以通過修改http包中的header來實現,代碼片段如下

importurllib2

headers={

User-Agent : Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.6) Gecko/20091201 Firefox/3.5.6

}

request=urllib2.Request(

url= https://my.oschina.net/jhao104/blog?catalog=3463517 ,

headers=headers

)

printurllib2.urlopen(request).read()

5、頁麵解析

對於頁麵解析最強大的當然是正則表達式,這個對於不同網站不同的使用者都不一樣,就不用過多的說明。

其次就是解析庫了,常用的有兩個lxml和BeautifulSoup。

對於這兩個庫,我的評價是,都是HTML/XML的處理庫,Beautifulsoup純python實現,效率低,但是功能實用,比如能用通過結果搜索獲得某個HTML節點的源碼;lxmlC語言編碼,高效,支持Xpath

6、驗證碼的處理

對於一些簡單的驗證碼,可以進行簡單的識別。本人也隻進行過一些簡單的驗證碼識別。但是有些反人類的驗證碼,比如12306,可以通過打碼平台進行人工打碼,當然這是要付費的。

7、gzip壓縮

有沒有遇到過某些網頁,不論怎麼轉碼都是一團亂碼。哈哈,那說明你還不知道許多web服務具有發送壓縮數據的能力,這可以將網絡線路上傳輸的大量數據消減 60% 以上。這尤其適用於 XML web 服務,因為 XML 數據 的壓縮率可以很高。

但是一般服務器不會為你發送壓縮數據,除非你告訴服務器你可以處理壓縮數據。

於是需要這樣修改代碼:

importurllib2,httplib

request=urllib2.Request( https://xxxx.com )

request.add_header( Accept-encoding , gzip )1

opener=urllib2.build_opener()

f=opener.open(request)

這是關鍵:創建Request對象,添加一個 Accept-encoding 頭信息告訴服務器你能接受 gzip 壓縮數據

然後就是解壓縮數據:

importStringIO

importgzip

compresseddata=f.read()

compressedstream=StringIO.StringIO(compresseddata)

gzipper=gzip.GzipFile(fileobj=compressedstream)

printgzipper.read()

8、多線程並發抓取

單線程太慢的話,就需要多線程了,這裏給個簡單的線程池模板 這個程序隻是簡單地打印了1-10,但是可以看出是並發的。

雖然說python的多線程很雞肋,但是對於爬蟲這種網絡頻繁型,還是能一定程度提高效率的。

fromthreadingimportThread

fromQueueimportQueue

fromtimeimportsleep

# q是任務隊列

#NUM是並發線程總數

#JOBS是有多少任務

q=Queue()

NUM=2

JOBS=10

#具體的處理函數,負責處理單個任務

defdo_somthing_using(arguments):

printarguments

#這個是工作進程,負責不斷從隊列取數據並處理

defworking():

whileTrue:

arguments=q.get()

do_somthing_using(arguments)

sleep(1)

q.task_done()

#fork NUM個線程等待隊列

foriinrange(NUM):

t=Thread(target=working)

t.setDaemon(True)

t.start()

#把JOBS排入隊列

foriinrange(JOBS):

q.put(i)

#等待所有JOBS完成

q.join()

點讚+關注

感謝大家

最後更新:2017-10-08 17:00:14

  上一篇:go Python還能用來做這個?隻要你想,就有這種操作!
  下一篇:go Python入門公開課