HTAP數據庫 PostgreSQL 場景與性能測試之 25 - (OLTP) IN , EXISTS 查詢
標簽
PostgreSQL , HTAP , OLTP , OLAP , 場景與性能測試
背景
PostgreSQL是一個曆史悠久的數據庫,曆史可以追溯到1973年,最早由2014計算機圖靈獎得主,關係數據庫的鼻祖Michael_Stonebraker 操刀設計,PostgreSQL具備與Oracle類似的功能、性能、架構以及穩定性。
PostgreSQL社區的貢獻者眾多,來自全球各個行業,曆經數年,PostgreSQL 每年發布一個大版本,以持久的生命力和穩定性著稱。
2017年10月,PostgreSQL 推出10 版本,攜帶諸多驚天特性,目標是勝任OLAP和OLTP的HTAP混合場景的需求:
《最受開發者歡迎的HTAP數據庫PostgreSQL 10特性》
1、多核並行增強
2、fdw 聚合下推
3、邏輯訂閱
4、分區
5、金融級多副本
6、json、jsonb全文檢索
7、還有插件化形式存在的特性,如 向量計算、JIT、SQL圖計算、SQL流計算、分布式並行計算、時序處理、基因測序、化學分析、圖像分析 等。
在各種應用場景中都可以看到PostgreSQL的應用:
PostgreSQL近年來的發展非常迅勐,從知名數據庫評測網站dbranking的數據庫評分趨勢,可以看到PostgreSQL向上發展的趨勢:
從每年PostgreSQL中國召開的社區會議,也能看到同樣的趨勢,參與的公司越來越多,分享的公司越來越多,分享的主題越來越豐富,橫跨了 傳統企業、互聯網、醫療、金融、國企、物流、電商、社交、車聯網、共享XX、雲、遊戲、公共交通、航空、鐵路、軍工、培訓、谘詢服務等 行業。
接下來的一係列文章,將給大家介紹PostgreSQL的各種應用場景以及對應的性能指標。
環境
環境部署方法參考:
《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(適合新用戶)》
阿裏雲 ECS:56核,224G,1.5TB*2 SSD雲盤
。
操作係統:CentOS 7.4 x64
數據庫版本:PostgreSQL 10
PS:ECS的CPU和IO性能相比物理機會打一定的折扣,可以按下降1倍性能來估算。跑物理主機可以按這裏測試的性能乘以2來估算。
場景 - IN , EXISTS 查詢 (OLTP)
1、背景
in 查詢,多用在多個輸入值的匹配場景。
實際上PostgreSQL支持很多種多個輸入值匹配的語法。
1、in (...)
2、in (table or subquery or srf)
3、= any (array)
4、exists (select 1 from (values (),(),...) as t(id) where x.?=t.id)
5、=? or =? or =? or .....
他們的執行計劃分別如下,(in (values....) or = any (array)
最佳) :
postgres=# explain select * from a where id in (1,2,3,4,5);
QUERY PLAN
-----------------------------------------------------------------
Index Scan using a_pkey on a (cost=0.43..9.46 rows=5 width=45)
Index Cond: (id = ANY ('{1,2,3,4,5}'::integer[]))
(2 rows)
postgres=# explain select * from a where id = any (array[1,2,3,4,5]);
QUERY PLAN
-----------------------------------------------------------------
Index Scan using a_pkey on a (cost=0.43..9.46 rows=5 width=45)
Index Cond: (id = ANY ('{1,2,3,4,5}'::integer[]))
(2 rows)
postgres=# explain select * from a where id = any (array(select generate_series(1,10)));
QUERY PLAN
-------------------------------------------------------------------
Index Scan using a_pkey on a (cost=5.45..22.74 rows=10 width=45)
Index Cond: (id = ANY ($0))
InitPlan 1 (returns $0)
-> ProjectSet (cost=0.00..5.02 rows=1000 width=4)
-> Result (cost=0.00..0.01 rows=1 width=0)
(5 rows)
postgres=# explain select * from a where id = any (array(select id from (values (1),(2),(3),(4),(5)) t (id)));
QUERY PLAN
---------------------------------------------------------------------
Index Scan using a_pkey on a (cost=0.50..17.79 rows=10 width=45)
Index Cond: (id = ANY ($0))
InitPlan 1 (returns $0)
-> Values Scan on "*VALUES*" (cost=0.00..0.06 rows=5 width=4)
(4 rows)
postgres=# explain select * from a where id in (select id from (values (1),(2),(3),(4),(5)) t (id));
QUERY PLAN
-------------------------------------------------------------------------
Nested Loop (cost=0.51..14.39 rows=5 width=45)
-> HashAggregate (cost=0.07..0.12 rows=5 width=4)
Group Key: "*VALUES*".column1
-> Values Scan on "*VALUES*" (cost=0.00..0.06 rows=5 width=4)
-> Index Scan using a_pkey on a (cost=0.43..2.85 rows=1 width=45)
Index Cond: (id = "*VALUES*".column1)
(6 rows)
postgres=# explain select * from a where exists (select 1 from (values (1),(2),(3),(4),(5)) t (id) where t.id=a.id);
QUERY PLAN
-------------------------------------------------------------------------
Nested Loop (cost=0.51..14.39 rows=5 width=45)
-> HashAggregate (cost=0.07..0.12 rows=5 width=4)
Group Key: "*VALUES*".column1
-> Values Scan on "*VALUES*" (cost=0.00..0.06 rows=5 width=4)
-> Index Scan using a_pkey on a (cost=0.43..2.85 rows=1 width=45)
Index Cond: (id = "*VALUES*".column1)
(6 rows)
postgres=# explain select * from a where id=1 or id=2 or id=3 or id=4 or id =5;
QUERY PLAN
----------------------------------------------------------------------------
Bitmap Heap Scan on a (cost=8.22..14.32 rows=5 width=45)
Recheck Cond: ((id = 1) OR (id = 2) OR (id = 3) OR (id = 4) OR (id = 5))
-> BitmapOr (cost=8.22..8.22 rows=5 width=0)
-> Bitmap Index Scan on a_pkey (cost=0.00..1.64 rows=1 width=0)
Index Cond: (id = 1)
-> Bitmap Index Scan on a_pkey (cost=0.00..1.64 rows=1 width=0)
Index Cond: (id = 2)
-> Bitmap Index Scan on a_pkey (cost=0.00..1.64 rows=1 width=0)
Index Cond: (id = 3)
-> Bitmap Index Scan on a_pkey (cost=0.00..1.64 rows=1 width=0)
Index Cond: (id = 4)
-> Bitmap Index Scan on a_pkey (cost=0.00..1.64 rows=1 width=0)
Index Cond: (id = 5)
(13 rows)
2、設計
1億記錄,查詢匹配多個輸入值的性能。分別輸入1,10,100,1000,10000,100000,1000000個值作為匹配條件。
1、in (...)
2、in (table or subquery or srf)
3、= any (array)
4、exists (select 1 from (values (),(),...) as t(id) where x.?=t.id)
5、=? or =? or =? or .....
3、準備測試表
create table t_in_test (id int primary key, info text, crt_time timestamp);
4、準備測試函數(可選)
5、準備測試數據
insert into t_in_test select generate_series(1,100000000), md5(random()::text), clock_timestamp();
6、準備測試腳本
1、in (...)
1,10,100,1000,10000,100000,1000000 個輸入值的測試性能
do language plpgsql $$
declare
arr text;
ts timestamp := clock_timestamp();
mx int8;
begin
for i in 0..6 loop
mx := (1*(10^i))::int8;
select string_agg((random()*100000)::int::text, ',') into arr from generate_series(1, mx);
ts := clock_timestamp();
execute 'select * from t_in_test where id in ('||arr||')';
raise notice '%: %', mx, clock_timestamp()-ts;
end loop;
end;
$$ ;
2、in (table or subquery or srf)
1,10,100,1000,10000,100000,1000000 個輸入值的測試性能
do language plpgsql $$
declare
arr text;
ts timestamp := clock_timestamp();
mx int8;
begin
for i in 0..6 loop
mx := (1*(10^i))::int8;
ts := clock_timestamp();
perform * from t_in_test where id in ( select (random()*100000)::int from generate_series(1, mx) );
raise notice '%: %', mx, clock_timestamp()-ts;
end loop;
end;
$$ ;
3、= any (array)
1,10,100,1000,10000,100000,1000000 個輸入值的測試性能
do language plpgsql $$
declare
arr int[];
ts timestamp := clock_timestamp();
mx int8;
begin
for i in 0..6 loop
mx := (1*(10^i))::int8;
select array_agg((random()*100000)::int) into arr from generate_series(1, mx);
ts := clock_timestamp();
perform * from t_in_test where id = any ( arr );
raise notice '%: %', mx, clock_timestamp()-ts;
end loop;
end;
$$ ;
4、exists (select 1 from (values (),(),...) as t(id) where x.?=t.id)
1,10,100,1000,10000,100000,1000000 個輸入值的測試性能
do language plpgsql $$
declare
ts timestamp := clock_timestamp();
mx int8;
begin
for i in 0..6 loop
mx := (1*(10^i))::int8;
ts := clock_timestamp();
perform * from t_in_test where exists ( select 1 from ( select (random()*100000)::int id from generate_series(1,mx) ) t where t_in_test.id=t.id );
raise notice '%: %', mx, clock_timestamp()-ts;
end loop;
end;
$$ ;
5、壓測
匹配1 ~ 100個輸入值,求聚合。高並發。
vi test.sql
\set x random(1,100)
select count(*) from t_in_test where id = any(array(select (random()*100000000)::int from generate_series(1,:x)));
壓測
CONNECTS=56
TIMES=300
export PGHOST=$PGDATA
export PGPORT=1999
export PGUSER=postgres
export PGPASSWORD=postgres
export PGDATABASE=postgres
pgbench -M prepared -n -r -f ./test.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES
7、測試
1、in (...)
1,10,100,1000,10000,100000,1000000 個輸入值的測試性能
do language plpgsql $$
declare
arr text;
ts timestamp := clock_timestamp();
mx int8;
begin
for i in 0..6 loop
mx := (1*(10^i))::int8;
select string_agg((random()*100000)::int::text, ',') into arr from generate_series(1, mx);
ts := clock_timestamp();
execute 'select * from t_in_test where id in ('||arr||')';
raise notice '%: %', mx, clock_timestamp()-ts;
end loop;
end;
$$ ;
NOTICE: 1: 00:00:00.000256
NOTICE: 10: 00:00:00.000173
NOTICE: 100: 00:00:00.000772
NOTICE: 1000: 00:00:00.004445
NOTICE: 10000: 00:00:00.024073
NOTICE: 100000: 00:00:00.195439
NOTICE: 1000000: 00:00:01.638982
DO
2、in (table or subquery or srf)
1,10,100,1000,10000,100000,1000000 個輸入值的測試性能
do language plpgsql $$
declare
arr text;
ts timestamp := clock_timestamp();
mx int8;
begin
for i in 0..6 loop
mx := (1*(10^i))::int8;
ts := clock_timestamp();
perform * from t_in_test where id in ( select (random()*100000)::int from generate_series(1, mx) );
raise notice '%: %', mx, clock_timestamp()-ts;
end loop;
end;
$$ ;
NOTICE: 1: 00:00:00.00044
NOTICE: 10: 00:00:00.000244
NOTICE: 100: 00:00:00.000788
NOTICE: 1000: 00:00:00.004455
NOTICE: 10000: 00:00:00.028793
NOTICE: 100000: 00:00:00.187841
NOTICE: 1000000: 00:00:00.583744
DO
3、= any (array)
1,10,100,1000,10000,100000,1000000 個輸入值的測試性能
do language plpgsql $$
declare
arr int[];
ts timestamp := clock_timestamp();
mx int8;
begin
for i in 0..6 loop
mx := (1*(10^i))::int8;
select array_agg((random()*100000)::int) into arr from generate_series(1, mx);
ts := clock_timestamp();
perform * from t_in_test where id = any ( arr );
raise notice '%: %', mx, clock_timestamp()-ts;
end loop;
end;
$$ ;
NOTICE: 1: 00:00:00.000216
NOTICE: 10: 00:00:00.000151
NOTICE: 100: 00:00:00.000654
NOTICE: 1000: 00:00:00.00399
NOTICE: 10000: 00:00:00.021216
NOTICE: 100000: 00:00:00.106335
NOTICE: 1000000: 00:00:00.386113
DO
4、exists (select 1 from (values (),(),...) as t(id) where x.?=t.id)
1,10,100,1000,10000,100000,1000000 個輸入值的測試性能
do language plpgsql $$
declare
ts timestamp := clock_timestamp();
mx int8;
begin
for i in 0..6 loop
mx := (1*(10^i))::int8;
ts := clock_timestamp();
perform * from t_in_test where exists ( select 1 from ( select (random()*100000)::int id from generate_series(1,mx) ) t where t_in_test.id=t.id );
raise notice '%: %', mx, clock_timestamp()-ts;
end loop;
end;
$$ ;
NOTICE: 1: 00:00:00.000458
NOTICE: 10: 00:00:00.000224
NOTICE: 100: 00:00:00.000687
NOTICE: 1000: 00:00:00.003916
NOTICE: 10000: 00:00:00.02734
NOTICE: 100000: 00:00:00.187671
NOTICE: 1000000: 00:00:00.570389
DO
5、匹配1 ~ 100個輸入值,求聚合。高並發。
transaction type: ./test.sql
scaling factor: 1
query mode: prepared
number of clients: 56
number of threads: 56
duration: 300 s
number of transactions actually processed: 13913566
latency average = 1.207 ms
latency stddev = 0.840 ms
tps = 46378.142149 (including connections establishing)
tps = 46384.723274 (excluding connections establishing)
script statistics:
- statement latencies in milliseconds:
0.002 \set x random(1,100)
1.207 select count(*) from t_in_test where id = any(array(select (random()*100000000)::int from generate_series(1,:x)));
TPS: 46384
5、匹配1 ~ 100個輸入值,求聚合。高並發。
平均響應時間: 1.207 毫秒
5、匹配1 ~ 100個輸入值,求聚合。高並發。
1到100萬個輸入值的響應時間
1億條記錄,匹配100萬個輸入值( = any (array)
),隻需要386毫秒。
NOTICE: 1: 00:00:00.000216
NOTICE: 10: 00:00:00.000151
NOTICE: 100: 00:00:00.000654
NOTICE: 1000: 00:00:00.00399
NOTICE: 10000: 00:00:00.021216
NOTICE: 100000: 00:00:00.106335
NOTICE: 1000000: 00:00:00.386113
參考
《PostgreSQL、Greenplum 應用案例寶典《如來神掌》 - 目錄》
《PostgreSQL 使用 pgbench 測試 sysbench 相關case》
https://www.postgresql.org/docs/10/static/pgbench.html
最後更新:2017-11-14 14:04:40